Publications by authors named "Lie Zou"

The interfacial photothermal-photocatalytic systems can generate clean water while purifying wastewater containing organic pollutants, but the impact of thermal convection on synergistic effects remains unexplored. This paper aims to regulate the thermal convection at the interface to significantly enhance the synergistic effect of interfacial photothermal-photocatalytic systems. A novel heterogeneous structure comprising iron-based metal-organic frameworks and multi-walled carbon nanotubes with a gelatin-polyvinyl alcohol (PVA) double network hydrogel (MWCNTs@NM88B/PVA/gelatin hydrogel, denoted as MMH) is developed and employed in the construction of the solar-driven interfacial evaporation (SIE) system.

View Article and Find Full Text PDF

Cu-doped BiOCO catalyst with copper (Cu) acting an electron hunter for conversion of carbon dioxide into formate is developed. The Cu-BiOCO catalyst with hollow microsphere structure extends the duration of CO retention on the catalyst, providing a greater number of active sites. It exhibits remarkable performance with conversion efficacy of 98.

View Article and Find Full Text PDF

The scarcity of fresh water necessitates sustainable and efficient water desalination strategies. Solar-driven steam generation (SSG), which employs solar energy for water evaporation, has emerged as a promising approach. Graphene oxide (GO)-based membranes possess advantages like capillary action and Marangoni effect, but their stacking defects and dead zones of flexible flakes hinders efficient water transportation, thus the evaporation rate lag behind unobstructed-porous 3D evaporators.

View Article and Find Full Text PDF

We demonstrate a dialytic strategy for the synthesis of congeneric two-dimensional metal-organic framework (2D MOF) nanosheets with a dialysis membrane using 1,4-benzenedicarboxylic acid (BDC), 1,4-naphthalenedicarboxylic acid (NDC), and 9,10-anthracenedicarboxylic acid (ADC) as organic linkers and copper(II) as a metal precursor, respectively. Polyimide (PI) membranes containing these empty 2D MOF nanosheets exhibit distinct molecular sieve effects. Molecular dynamic simulation results reveal that the structures of MOF-polymer interfaces are designable by modifying the MOF interlayer distance and aperture size, which has significant influences on gas permeability and selectivity.

View Article and Find Full Text PDF

Mitochondria are crucial for physiological activities, and alterations in mitochondrial function will lead to diverse human diseases. However, the tracking and long-term visualizing mitochondria are still deficient, which limits the research related to mitochondria. Inspired by the exceptional interfacial architecture of mitochondria, we proposed the interface-targeting model for designing fluorescent probes that could track and long-term visualize mitochondria with high selectivity in living cells, tissues, and zebrafish.

View Article and Find Full Text PDF

Conjugated fluorophores have been extensively used for fluorescence sensing of various substances in the field of life processes and environmental science, due to their noninvasiveness, sensitivity, simplicity and rapidity. Most existing conjugated fluorophores exhibit excellent light-emitting performance in dilute solutions, but their properties substantially decrease or even completely vanish due to severe aggregation quenching in the solid state. Herein, we synthesize a series of triazolopyridine-thiophene donor-acceptor-donor (D-A-D) type conjugated molecules with high absolute fluorescence quantum yields (ΦF) ranging from 80% to 89% in solution.

View Article and Find Full Text PDF