In this paper, a low-cycle-fatigue (LCF) crack initiation life prediction approach that explicitly distinguishes nucleation and small crack propagation regimes is presented for ultrafine-grained (UFG) aluminum alloy by introducing two fatigue indicator parameters (FIPs) at the grain level. These two characterization parameters, the deformation inhomogeneity measured by the standard deviation of the dot product of normal stress and longitudinal strain and the microscale multiaxial strain considering the non-proportional cyclic additional hardening and mean strain effect, were proposed and respectively regarded as the driving forces for fatigue nucleation and small crack propagation. Then, the nucleation and small crack propagation lives were predicted by correlating these FIPs with statistical variables and cyclic J-integrals, respectively.
View Article and Find Full Text PDF