Publications by authors named "Lidong He"

Job crafting benefits both employees and organizations by enhancing employees' health, well-being, and performance. Therefore, it is crucial to investigate the individual factors that encourage job crafting and the conditions under which they operate. Based on Trait Activation Theory, this study examined the relationship between employees' growth mindset and job crafting, as well as the moderating effect of job autonomy on this relationship.

View Article and Find Full Text PDF

Magnetic phase transitions play crucial roles in various material applications, including sensors, actuators, information storage, magnetic refrigeration, and so on. Typically, these magnetic phase transitions exhibit discontinuous first-order phase transitions. When a material undergoes a magnetic phase transition, it often exhibits simultaneous changes in both its crystal and electronic structures.

View Article and Find Full Text PDF

For complex networked systems, based on the consideration of nonlinearity and causality, a novel general method of nonlinear causal network learning, termed extreme support vector regression Granger causality (ESVRGC), is proposed. The nonuniform time-delayed influence of the driving nodes on the target node is particularly considered. Then, the restricted model and the unrestricted model of Granger causality are, respectively, formulated based on extreme support vector regression, which uses the selected time-delayed components of system variables as the inputs of kernel functions.

View Article and Find Full Text PDF

Based on the job demands-resources model and conservation of resource theory, this study investigated 456 Chinese college teachers' work stress, stress mindset, resilience, emotional exhaustion, positive affect, and negative affect. The results of mediation analysis showed that resilience played a partial mediation role between work stress and emotional outcomes (emotional exhaustion, positive affect, and negative affect). Moreover, the results of a moderated mediation analysis showed that stress mindset moderated the relationship between work stress and resilience, and moderated the mediating effect of resilience between work stress and emotional outcomes (emotional exhaustion, positive affect, and negative affect).

View Article and Find Full Text PDF

Objective: To investigate the prognostic impact of computed tomography (CT) imaging big data-assisted arterial chemoembolization combined with iodine 125 (I) seed implantation on patients with non-small-cell lung cancer (NSCLC).

Methods: A total of 116 patients with intermediate and advanced NSCLC hospitalized in our hospital from August 2019 to August 2020 were selected and divided into a control group and an experiment group (58 cases in each group) by random number table method for the study. The patients in the experiment group were treated with CT imaging big data-assisted arterial chemoembolization combined with I seed implantation, while the patients in the control group were treated with arterial chemoembolization alone, with the use of gemcitabine combined with cisplatin (GP) in chemotherapy.

View Article and Find Full Text PDF

Objective: To investigate the use and the efficacy of bronchial artery chemoembolization combined with 125I seed implantation in advanced non-small-cell lung cancer (NSCLC) therapy based on the medical database.

Methods: A total of 102 patients with advanced NSCLC were randomly divided into two groups. The control group was treated with 125I seed implantation, and the observation group was treated with bronchial artery chemoembolization (BACE) combined with 125I seed implantation based on medical database.

View Article and Find Full Text PDF

AMG 966 is a bi-specific, heteroimmunoglobulin molecule that binds both tumor necrosis factor alpha (TNFα) and TNF-like ligand 1A (TL1A). In a first-in-human clinical study in healthy volunteers, AMG 966 elicited anti-drug antibodies (ADA) in 53 of 54 subjects (98.1%), despite a paucity of T cell epitopes observed in T cell assays.

View Article and Find Full Text PDF

A duplex surface enhanced Raman scattering (SERS)-based lateral flow immunosensor was established for the simultaneous detection of two common antibiotic residues including tetracycline and penicillin in milk. The newly synthesized Au@Ag nanoparticles were labeled with different Raman molecules including 5,5-dithiobis-2-nitrobenzoic acid (DTNB) or 4-mercaptobenzoic acid (MBA), followed by the conjugation of anti-tetracycline monoclonal antibody or anti-penicillin receptor, forming two kinds of SERS nanoprobes. The two nanoprobes can recognize tetracycline-BSA and ampicillin-BSA, respectively, which facilitates the simultaneous detection of the two types of antibiotics on a single test line.

View Article and Find Full Text PDF

Aflatoxin M (AFM) is generally used as a biomarker in urine for the assessment of aflatoxin exposure in humans and animals. However, there is no approach for the rapid and on-site monitoring of AFM level in urine. Here, we report a surface enhanced Raman scattering (SERS)-based lateral flow immunosensor built for such a purpose.

View Article and Find Full Text PDF

The Consortium for Top-Down Proteomics (www.topdownproteomics.org) launched the present study to assess the current state of top-down mass spectrometry (TD MS) and middle-down mass spectrometry (MD MS) for characterizing monoclonal antibody (mAb) primary structures, including their modifications.

View Article and Find Full Text PDF

A novel dual near-infrared fluorescence-based lateral flow immunosensor was developed to determine zearalenone and deoxynivalenol in maize. Two near-infrared dyes with distinct fluorescence characteristics were utilized to separately label the anti-zearalenone and anti-deoxynivalenol antibodies as detection reagents. The capture antigens zearalenone-BSA and deoxynivalenol-BSA were mixed and immobilized on the same test line of nitrocellulose membrane.

View Article and Find Full Text PDF

A high-affinity monoclonal antibody (mAb) has been prepared and separately a gold nanoparticle (AuNP)-based and a near-infrared (NIR) fluorescence-based lateral flow immunoassay (LFA) developed for determination of 5-hydroxyflunixin residue in raw milk. The AuNP and IRDye® 800CW were used to label anti-5-hydroxyflunixin mAb to form the AuNP-mAb and NIR dye-mAb conjugates, respectively. Quantitative determination of 5-hydroxyflunixin was achieved by imaging the optical or fluorescence intensity of the AuNP-mAb and NIR dye-mAb captured on the test line.

View Article and Find Full Text PDF

A multiplex surface-enhanced Raman scattering (SERS)-based lateral flow immunosensor was developed to determine six major mycotoxins in maize. Two characteristic Raman reporter molecules-5,5-dithiobis-2-nitrobenzoic acid (DTNB) and 4-mercaptobenzoic acid (MBA)-were used to label the synthesized Au@Ag core-shell nanoparticles for the preparation of SERS nanoprobes as detection reagents. Six corresponding hapten-protein conjugates were prepared and dispensed on three test lines of nitrocellulose membrane with two conjugates on each line as capture antigens.

View Article and Find Full Text PDF

Background: Colistin (polymyxin E) is a kind of peptide antibiotic which has been approved in animal production for the purposes of disease prevention, treatment, and growth promotion. However, the wide use of colistin in animal feed may accelerate the spread of colistin-resistance gene MCR-1 from animal production to human beings, and its residue in animal-origin food may also pose serious health hazards to humans. Thus, it is necessary to develop corresponding analytical methods to monitor the addition of colistin in animal feed and the colistin residue in animal-origin food.

View Article and Find Full Text PDF

Thrombus formation is quantitatively measured and evaluated by the electrical impedance spectroscopy method in this study, which confirms the possibility for the application of a promising non-invasive thrombus detection method. The impedance parameter Z*(t) of blood from the electrical impedance spectroscopy is utilized to elaborate the impedance performance of blood during thrombus formation process. Experimental results indicate that the impedance Z*(t) of blood has regular variations under the formation of thrombus, which could be divided into three stages.

View Article and Find Full Text PDF

Background: Hemoglobinopathies and thalassemias are the most common genetically determined disorders. Current screening methods include cation-exchange HPLC and electrophoresis, the results of which can be ambiguous because of limited resolving power. Subsequently, laborious genetic testing is required for confirmation.

View Article and Find Full Text PDF

The current five-year survival rate for systemic AL amyloidosis or multiple myeloma is ∼51%, indicating the urgent need for better diagnosis methods and treatment plans. Here, we describe highly specific and sensitive top-down and middle-down MS/MS methods owning the advantages of fast sample preparation, ultrahigh mass accuracy, and extensive residue cleavages with 21 telsa FT-ICR MS/MS. Unlike genomic testing, which requires bone marrow aspiration and may fail to identify all monoclonal immunoglobulins produced by the body, the present method requires only a blood draw.

View Article and Find Full Text PDF

In this study, we developed a quadruplex gold immunochromatogaraphic assay (GICA) for the simultaneous determination of four families of antibiotics including β-lactams, tetracyclines, streptomycin and chloramphenicol in milk. For qualitative analysis, the visual cut-off values were measured to be 2-100 ng/mL, 16-32 ng/mL, 50 ng/mL and 2.4 ng/mL for β-lactams, tetracyclines, streptomycin and chloramphenicol, respectively.

View Article and Find Full Text PDF

Metabolite identification in metabolomics samples is a key step that critically impacts downstream analysis. We recently introduced the SUMMIT NMR/mass spectrometry (MS) hybrid approach for the identification of the molecular structure of unknown metabolites based on the combination of NMR, MS, and combinatorial cheminformatics. Here, we demonstrate the feasibility of the approach for an untargeted analysis of both a model mixture and E.

View Article and Find Full Text PDF

With the rapid growth of therapeutic monoclonal antibodies (mAbs), stringent quality control is needed to ensure clinical safety and efficacy. Monoclonal antibody primary sequence and post-translational modifications (PTM) are conventionally analyzed with labor-intensive, bottom-up tandem mass spectrometry (MS/MS), which is limited by incomplete peptide sequence coverage and introduction of artifacts during the lengthy analysis procedure. Here, we describe top-down and middle-down approaches with the advantages of fast sample preparation with minimal artifacts, ultrahigh mass accuracy, and extensive residue cleavages by use of 21 tesla FT-ICR MS/MS.

View Article and Find Full Text PDF

A multiplex lateral flow immunoassay (LFA) is developed for the simultaneous on-site determination of three mycotoxins (aflatoxin B1, zearalenone and ochratoxin A) in corn, rice and peanut. By systematically optimizing the preparation of antibody-gold nanoparticle conjugates, the size of gold nanoparticle and the position of capture antigen, the developed LFA can obtain a visual detection limit of 10μg/kg for aflatoxin B1, 50μg/kg for zearalenone and 15μg/kg for ochratoxin A. For quantitative analysis, the limits of detection were 0.

View Article and Find Full Text PDF

In this study, we developed a novel near-infrared fluorescence based multiplex lateral flow immunoassay by conjugating a near-infrared label to broad-specificity monoclonal antibody/receptor as detection complexes. Different antigens were dispensed onto separate test zones of nitrocellulose membrane to serve as capture reagents. This assay format allowed the simultaneous detection of four families of antibiotics (β-lactams, tetracyclines, quinolones and sulfonamides) in milk within 20 min.

View Article and Find Full Text PDF

Cytosine (C)-rich DNA can adopt i-motif folds under acidic conditions, with the human telomere i-motif providing a well-studied example. The dimensions of this i-motif are appropriate for capture in the nanocavity of the α-hemolysin (α-HL) protein pore under an electrophoretic force. Interrogation of the current vs time (i-t) traces when the i-motif interacts with α-HL identified characteristic signals that were pH dependent.

View Article and Find Full Text PDF