Compelling evidence in animals and humans from a variety of approaches demonstrate that neuropeptide Y (NPY) in the brain can provide resilience to development of many stress-elicited symptoms. Preclinical experiments demonstrated that delivery of NPY by intranasal infusion to rats shortly after single exposure to traumatic stress in the single prolonged stress (SPS) rodent model of post-traumatic stress disorder (PTSD) can prevent development of many relevant behavioral alterations weeks later, including heightened anxiety and depressive-like behavior. Here, we examined responses to intranasal NPY in the absence of stress to evaluate the safety profile.
View Article and Find Full Text PDFThe noradrenergic systems play a key role in stress triggered disorders such as post-traumatic stress disorder (PTSD). We hypothesized that traumatic stress will alter expression of norepinephrine transporter (NET) in locus coeruleus (LC) and its target brain regions which could be related to hyperarousal. Male Sprague-Dawley rats were subjected to single prolonged stress (SPS) and several weeks later the LC was isolated.
View Article and Find Full Text PDFEmerging evidence indicates that intranasal delivery of neuropeptide Y (NPY) to the brain has therapeutic potential for management of stress-triggered neuropsychiatric disorders. Here we aimed to determine how intranasal administration of NPY, either before or immediately after, traumatic stress in single prolonged stress (SPS) rodent model of Post-traumatic stress disorder (PTSD) impacts food consumption and body weight. SPS stressors suppressed food consumption for at least two days in the vehicle-treated animals.
View Article and Find Full Text PDFThe neuropeptide Y (NPY) system plays an important role in mediating resilience to the harmful effect of stress in post-traumatic stress disorder (PTSD). It can mediate its effects via several G-protein coupled receptors: Y1R, Y2R, Y4R and Y5R. To investigate the role of individual NPY receptors in the resilience effects of NPY to traumatic stress, intranasal infusion of either Y1R agonists [D-His]NPY, [LeuPro]NPY, Y2R agonist NPY (3-36) or NPY were administered to male Sprague-Dawley rats immediately following the last stressor of the single prolonged stress (SPS) protocol, a widely used PTSD animal model.
View Article and Find Full Text PDFAcoustic startle response (ASR) assesses hyperarousal, a core symptom of posttraumatic stress disorder (PTSD). Intranasal neuropeptide Y (NPY) administration was shown to prevent hyperarousal in single prolonged stress (SPS) rodent PTSD model. However, it is unclear how ASR itself alters responses to stress.
View Article and Find Full Text PDFPTSD is heterogeneous disorder that can be long lasting and often has delayed onset following exposure to a traumatic event. Therefore, it is important to take a staging approach to evaluate progression of biological mechanisms of the disease. Here, we begin to evaluate the temporal trajectory of changes following exposure to traumatic stressors in the SPS rat PTSD model.
View Article and Find Full Text PDFFront Behav Neurosci
February 2019
Sex plays an important role in susceptibility to stress triggered disorders. Posttraumatic Stress disorder (PTSD), a debilitating psychiatric disorder developed after exposure to a traumatic event, is two times more prevalent in women than men. However, the vast majority of animal models of PTSD, including single prolonged stress (SPS), were performed mostly with males.
View Article and Find Full Text PDFThere is a great need for effective treatment options for post-traumatic stress disorder (PTSD). Neuropeptide Y (NPY) is associated with resilience to traumatic stress. MC4R antagonists, such as HS014, also reduce response to stress.
View Article and Find Full Text PDFCorticotropin-releasing factor is well known activator of the hypothalamic-pituitary-adrenocortical axis, that represents crucial system participating on stress response of the organism. Urocortins are members of the corticotropin-releasing factor family of peptides with proposed effects on neuroendocrine and behavioral stress response mechanisms. Urocortin 2, one of three known urocortins, is present in central and peripheral stress response system and its expression can be augmented by glucocorticoids.
View Article and Find Full Text PDFDelivery of neuropeptide Y (NPY) to the brain by intranasal administration shows promise as non-invasive means for preventing or treating PTSD symptoms. Here, radiotelemetry and echocardiography were used to determine effects of intranasal NPY on cardiovascular functions in absence and presence of stress. Male adult Sprague Dawley rats were implanted with radiotelemetric probes, and subjected to single prolonged stress (SPS), followed by intranasal vehicle (V) or NPY (150μg) under conditions shown to prevent development of many of the behavioral neuroendocrine and biochemical impairments.
View Article and Find Full Text PDFThe locus coeruleus (LC)-amygdala circuit is implicated in playing a key role in responses to emotionally arousing stimuli and in the manifestation of post-traumatic stress disorder (PTSD). Here, we examined changes in gene expression of a number of important mediators of the LC-amygdala circuitry in the inhibition avoidance model of PTSD. After testing for basal acoustic startle response (ASR), rats were exposed to a severe footshock (1.
View Article and Find Full Text PDFCurrent clinical and pre-clinical data suggest that both cannabinoid agents and blockage of CRF through corticotrophin releasing factor receptor type 1 (CRFr1) may offer therapeutic benefits for post-traumatic stress disorder (PTSD). Here we aim to determine whether they are more effective when combined when microinjected into the basolateral amygdala (BLA) or CA1 area of the hippocampus after exposure to a stressful event in the shock/reminders rat model for PTSD. Injection of the fatty acid amide hydrolase (FAAH) inhibitor URB597 after the shock into either the BLA or CA1 facilitated extinction, and attenuated startle response and anxiety-like behavior.
View Article and Find Full Text PDFDelivery of neuropeptide Y (NPY) to the brain by intranasal infusion soon after traumatic stress has shown therapeutic potential, and prevented development of many behavioral and neuroendocrine impairments in the single prolonged stress (SPS) animal model of PTSD. Therefore, we examined whether the Y1R preferring agonist [LeuPro]NPY is sufficient to prevent development of SPS induced depressive-like behavioral changes, and hypothalamic gene expression as obtained with intranasal NPY intervention. Male Sprague-Dawely rats were given intranasal infusion of either NPY (150 μg/rat), a low (68 μg /rat), or high (132 μg/rat) dose of [LeuPro]NPY or vehicle immediately following the last SPS stressor, left undisturbed for 1 week and then tested for depressive-like behavior together with naïve unstressed controls.
View Article and Find Full Text PDFThere is extensive evidence that NPY in the brain can modulate the responses to stress and play a critical role in resistance to, or recovery from, harmful effects of stress. Development of PTSD and comorbid depression following exposure to traumatic stress are associated with low NPY. This review discusses putative mechanisms for NPY's anti-stress actions.
View Article and Find Full Text PDFDysregulation of the central noradrenergic system is a core feature of post-traumatic stress disorder (PTSD). Here, we examined molecular changes in locus coeruleus (LC) triggered by single-prolonged stress (SPS) PTSD model at a time when behavioral symptoms are manifested, and the effect of early intervention with intranasal neuropeptide Y (NPY). Immediately following SPS stressors, male SD rats were administered intranasal NPY (SPS/NPY) or vehicle (SPS/V).
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
March 2015
The involvement of the nonclassical renin-angiotensin system (RAS) in the adrenomedullary response to stress is unclear. Therefore, we examined basal and immobilization stress (IMO)-triggered changes in gene expression of the classical and nonclassical RAS receptors in the rat adrenal medulla, specifically the angiotensin II type 2 (AT2) and type 4 (AT4) receptors, (pro)renin receptor [(P)RR], and Mas receptor (MasR). All RAS receptors were identified, with AT2 receptor mRNA levels being the most abundant, followed by the (P)RR, AT1A receptor, AT4 receptor, and MasR.
View Article and Find Full Text PDFStress triggered neuropsychiatric disorders are a serious societal problem. Prophylactic treatment or early intervention has great potential in increasing resilience to traumatic stress and reducing its harmful impact. Previously, we demonstrated proof of concept that intranasal administration of neuropeptide Y (NPY) or the melanocortin receptor four (MC4R) antagonist, HS014, prior to single prolonged stress (SPS) rodent post-traumatic stress disorder (PTSD) model, can prevent or attenuate many PTSD associated impairments.
View Article and Find Full Text PDFMelanocortin receptor four (MC4R) is implicated in regulation of stress-related functions. We previously demonstrated that intranasal infusion of MC4R antagonist HS014, shortly before single prolonged stress (SPS) animal model of post-traumatic stress disorder, lessened the development of anxiety- and depression-like behavior depending on the dose. Here, we evaluated effects of HS014 on SPS-elicited changes in hypothalamic-pituitary-adrenal axis and expression of several genes of interest in mediobasal hypothalamus, hippocampus, and locus coeruleus.
View Article and Find Full Text PDFIntranasal administration of neuropeptide Y (NPY) is a promising treatment strategy to reduce traumatic stress-induced neuropsychiatric symptoms of posttraumatic stress disorder (PTSD). We evaluated the potential of intranasal NPY to prevent dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, a core neuroendocrine feature of PTSD. Rats were exposed to single prolonged stress (SPS), a PTSD animal model, and infused intranasally with vehicle or NPY immediately after SPS stressors.
View Article and Find Full Text PDFBradykinin, acting via the bradykinin B2 receptor (B2R), is a potent stimulator of adrenomedullary catecholamine biosynthesis and release and likely plays an important role in the adrenomedullary stress response. However, the effects of stress on the expression of this receptor in the adrenal medulla are currently unclear. Here, we examined the changes in adrenomedullary B2R gene expression in male rats in response to single (1 time) and repeated (6 times) exposure to 2 hours immobilization stress (IMO).
View Article and Find Full Text PDFBrain melanocortinergic systems and specifically melanocortin receptor four (MC4R) are implicated in modulation of anxiety- and depressive-like behavior induced by mild or moderate stress. Here we examine whether blockage of central MC4Rs with HS014 before severe traumatic stress may protect against development of anxiety and depression co-morbid with post-traumatic stress disorder (PTSD). Male rats were treated intranasally (IN) with vehicle or varied doses of HS014, 30min prior to single prolonged stress (SPS) animal model of PTSD.
View Article and Find Full Text PDFThe corticotropin-releasing hormone (CRH) family regulates the endocrine stress response. Here, we examined the effect of immobilization stress (IMO) on gene expression of adrenomedullary CRH family members. Urocortin 2 (Ucn2) has the highest basal gene expression and is increased by > 30-fold in response to single IMO and about 10-fold after six daily repeated IMO.
View Article and Find Full Text PDFWhile the renin-angiotensin system is important for adrenomedullary responses to stress, the involvement of specific angiotensin II (Ang II) receptor subtypes is unclear. We examined gene expression changes of angiotensin II type 1A (AT(1A)) and type 2 (AT(2)) receptors in rat adrenal medulla in response to immobilization stress (IMO). AT(2) receptor mRNA levels decreased immediately after a single 2-h IMO.
View Article and Find Full Text PDFWith acute stress, the release of adrenomedullary catecholamines is important for handling the emergency situation. However, when chronic or repeated, stress alters the allostatic load and leads to a hyperadrenergic state, resulting in the development or worsening of a wide range of diseases. To help elucidate the mechanism, we examined the effects of single and repeated immobilization stress on gene expression of components of neurosecretory vesicles in the adrenal medulla.
View Article and Find Full Text PDFVesicular monoamine transporters (VMATs) mediate transmitter uptake into neurosecretory vesicles. There are two VMAT isoforms, VMAT1 and VMAT2, encoded by separate genes and displaying different cellular distributions and pharmacological properties. We examined the effect of immobilization stress (IMO) on expression of VMATs in the rat adrenal medulla.
View Article and Find Full Text PDF