Symbolic anchoring is an important topic in robotics, as it enables robots to obtain symbolic knowledge from the perceptual information acquired through their sensors and maintain the link between that knowledge and the sensory data. In cognitive-based robots, this process of transforming sub-symbolic data generated by sensors to obtain and maintain symbolic knowledge is still an open problem. To address this issue, this paper presents SAILOR, a framework for symbolic anchoring integrated into ROS 2.
View Article and Find Full Text PDFPrecision livestock farming involves the use of new technologies to improve the performance of farms with low profit margins. Since extensive livestock farming is demanding work requiring continuous supervision, it has not improved as drastically as agriculture. Furthermore, nowadays the world is more aware of the importance of respecting biodiversity and reducing the carbon footprint, for which sustainable animal production is recommended.
View Article and Find Full Text PDFPurpose: To examine the effects of 4 programming models (linear [LP], undulating [UP], reverse [RP], and constant [CP]) on physical performance.
Methods: Forty-eight moderately strength-trained men were randomly assigned to LP, UP, RP, and CP groups according to their 1-repetition maximum (1RM) in the full-squat exercise (SQ) and followed an 8-week training intervention using the SQ and monitoring movement velocity for every repetition. All groups trained with similar mean relative intensity (65% 1RM), number of repetitions (240), sets (3), and interset recovery (4 min) throughout the training program.
Livestock farming is assisted more and more by technological solutions, such as robots. One of the main problems for shepherds is the control and care of livestock in areas difficult to access where grazing animals are attacked by predators such as the Iberian wolf in the northwest of the Iberian Peninsula. In this paper, we propose a system to automatically generate benchmarks of animal images of different species from iNaturalist API, which is coupled with a vision-based module that allows us to automatically detect predators and distinguish them from other animals.
View Article and Find Full Text PDFPositioning asynchronous architectures based on time measurements are reaching growing importance in Local Positioning Systems (LPS). These architectures have special relevance in precision applications and indoor/outdoor navigation of automatic vehicles such as Automatic Ground Vehicles (AGVs) and Unmanned Aerial Vehicles (UAVs). The positioning error of these systems is conditioned by the algorithms used in the position calculation, the quality of the time measurements, and the sensor deployment of the signal receivers.
View Article and Find Full Text PDFTime difference of arrival (TDOA) positioning methods have experienced growing importance over the last few years due to their multiple applications in local positioning systems (LPSs). While five sensors are needed to determine an unequivocal three-dimensional position, systems with four nodes present two different solutions that cannot be discarded according to mathematical standards. In this paper, a new methodology to solve the 3D TDOA problems in a sensor network with four beacons is proposed.
View Article and Find Full Text PDFIn the current meso cutting technology industry, the demand for more advanced, accurate and cheaper devices capable of creating a wide range surfaces and geometries is rising. To fulfill this demand, an alternative single point cutting device with 6 degrees of freedom (6DOF) was developed. Its main advantage compared to milling has been the need for simpler cutting tools that require an easier development.
View Article and Find Full Text PDF