TP53 (TP53), p73 (TP73), and p63 (TP63) are members of the p53 transcription factor family, which has many activities spanning from embryonic development through to tumor suppression. The utilization of two promoters and alternative mRNA splicing has been shown to yield numerous isoforms in p53, p63, and p73. TAp73 is thought to mediate apoptosis as a result of nuclear accumulation following chemotherapy-induced DNA damage, according to a number of studies.
View Article and Find Full Text PDFThe metastatic dissemination is a complex multistep process by which tumor cells from a primary site enter into the systemic circulation to finally spread at distant sites. Even if this mechanism is rare at the tumor level, it remains the major cause of Osteosarcoma-patients' relapse and mortality. MicroRNAs (miRNAs) have recently been described as novel epigenetics' genes' expression regulators actively implicated in cancer progression and dissemination.
View Article and Find Full Text PDFOsteosarcoma and Ewing Sarcoma are the two most common types of Bone Sarcomas, principally localized at the long bones of the extremities and mainly affecting adolescents and young adults. Cisplatin is one of the current options in the therapeutic arsenal of drugs available to cure these aggressive cancers. Unfortunately, chemoresistance against this agent is still a major cause of patient relapse.
View Article and Find Full Text PDFEwing Sarcoma is a rare bone and soft tissue malignancy affecting children and young adults. Chromosomal translocations in this cancer produce fusion oncogenes as characteristic molecular signatures of the disease. The most common case is the translocation t (11; 22) (q24;q12) which yields the EWS-Fli1 chimeric transcription factor.
View Article and Find Full Text PDFPrimary cancer cell dissemination is a key event during the metastatic cascade, but context-specific determinants of this process remain largely undefined. Multiple reports have suggested that the p53 (TP53) family member p63 (TP63) plays an antimetastatic role through its minor epithelial isoform containing the N-terminal transactivation domain (TAp63). However, the role and contribution of the major p63 isoform lacking this domain, ΔNp63α, remain largely undefined.
View Article and Find Full Text PDFBackground: Circulating tumor cells (CTCs) are biomarkers for noninvasively measuring the evolution of tumor genotypes during treatment and disease progression. Recent technical progress has made it possible to detect and characterize CTCs at the single-cell level in blood.
Content: Most current methods are based on epithelial cell adhesion molecule (EpCAM) detection, but numerous studies have demonstrated that EpCAM is not a universal marker for CTC detection because it fails to detect both carcinoma cells that undergo epithelial-mesenchymal transition (EMT) and CTCs of mesenchymal origin.
The vicious cycle established between bone-associated tumours and bone resorption is the central problem with therapeutic strategies against primary bone tumours and bone metastasis. Here we report data to support inhibition of BET bromodomain proteins as a promising therapeutic strategy that target simultaneously the three partners of the vicious cycle. Treatment with JQ1, a BET bromodomain inhibitor, reduces cell viability of osteosarcoma cells and inhibits osteoblastic differentiation both in vitro and in vivo.
View Article and Find Full Text PDF