Background: Defining reference intervals in experimental animal models plays a crucial role in pre-clinical studies. The hepatic parameters in healthy animals provide useful information about type and extension of hepatic damage. However, in the majority of the cases, to obtain them require an invasive techniques.
View Article and Find Full Text PDFObjective: To examine whether the cardiac, renal and uterine physiological hemodynamic changes during gestation are altered in rats with an early and prolonged exposure to a high fat diet (HFD).
Methods: Arterial pressure and cardiac, renal, uterine and radial arteries hemodynamic changes during gestation were examined in adult SD rats exposed to normal (13%) (n = 8) or high (60%) (n = 8) fat diets from weaning. Plethysmography, high-resolution high-frequency ultrasonography and clearance of an inulin analog were used to evaluate the arterial pressure and hemodynamic changes before and at days 7, 14 and 19 of gestation.
Objective: The aim of this study was to compare in vivo vs ex vivo liver stiffness in rats with acoustic radiation force impulse (ARFI) elastography using the histological findings as the gold standard.
Methods: Eighteen male Wistar rats aged 16-18 months were divided into a control group (n = 6) and obese group (n = 12). Liver stiffness was measured with shear wave velocity (SWV) using the ARFI technique both in vivo and ex vivo.
This study examines whether the intake of a high-fat diet very early in life leads to changes in arterial pressure and renal function and evaluates whether the mechanisms involved in these changes are sex-dependent. Experiments were performed in male and female Sprague-Dawley rats fed a normal or high-fat diet from weaning to 4 mo of age. This exposure to a high-fat diet lead to an angiotensin II-dependent elevation in arterial pressure and to significant increments in fat abdominal volume and plasma leptin that were similar in both sexes.
View Article and Find Full Text PDF