Publications by authors named "Lidia Nieto"

12-Aza-epothilones (azathilones) incorporating quinoline side chains and bearing different N12-substituents have been synthesized via highly efficient RCM-based macrocyclizations. Quinoline-based azathilones with the side chain N-atom in the meta-position to the C15 atom in the macrocycle are highly potent inhibitors of cancer cell growth in vitro. In contrast, shifting the quinoline nitrogen to the position para to C15 leads to a ca.

View Article and Find Full Text PDF

The estrogen receptors (ERs) feature, next to their transcriptional role, important nongenomic signaling actions, with emerging clinical relevance. The Src Homology 2 (SH2) domain mediated interaction between cSrc kinase and ER plays a key role in this; however the molecular determinants of this interaction have not been elucidated. Here, we used phosphorylated ER peptide and semisynthetic protein constructs in a combined biochemical and structural study to, for the first time, provide a quantitative and structural characterization of the cSrc SH2-ER interaction.

View Article and Find Full Text PDF

The estrogen receptor (ER) is the number one target for the treatment of endocrine responsive breast cancer and remains a highly attractive target for new drug development. Despite considerable efforts to understand the role of ER post-translational modifications (PTMs), the complexity of these modifications and their impact, at the molecular level, are poorly understood. Using a chemical biology approach, fundamentally rooted in an efficient protein semisynthesis of tyrosine phosphorylated ER constructs, the complex role of the ER tyrosine phosphorylation is addressed here for the first time on a molecular level.

View Article and Find Full Text PDF

Small ligands are a powerful way to control the function of protein complexes via dynamic binding interfaces. The classic example is found in gene transcription where small ligands regulate nuclear receptor binding to coactivator proteins via the dynamic activation function 2 (AF2) interface. Current ligands target the ligand-binding pocket side of the AF2.

View Article and Find Full Text PDF

Well-defined human epidermal growth factor (hEGF) constructs featuring selectively addressable labels are urgently needed to address outstanding questions regarding hEGF biology. A protein-engineering approach was developed to provide access to hEGF constructs that carry two cysteine-based site-specific orthogonal labeling sites in multi-milligram quantities. Also, a site-selective (de)protection and labeling approach was devised, which allows selective modification of these hEGF constructs.

View Article and Find Full Text PDF

The binding of epothilones to dimeric tubulin and to microtubules has been studied by means of biochemical and NMR techniques. We have determined the binding constants of epothilone A (EpoA) and B (EpoB) to dimeric tubulin, which are 4 orders of magnitude lower than those for microtubules, and we have elucidated the conformation and binding epitopes of EpoA and EpoB when bound to tubulin dimers and microtubules in solution. The determined conformation of epothilones when bound to dimeric tubulin is similar to that found by X-ray crystallographic techniques for the binding of EpoA to the Tubulin/RB3/TTL complex; it is markedly different from that reported for EpoA bound to zinc-induced sheets obtained by electron crystallography.

View Article and Find Full Text PDF

In vitro mitogenesis assays have shown that sulfated glycosaminoglycans (GAGs; heparin and heparan sulfate) cause an enhancement of the mitogenic activity of fibroblast growth factors (FGFs). Herein, we report that the simultaneous presence of FGF and the GAG is not an essential requisite for this event to take place. Indeed, preincubation with heparin (just before FGF addition) of cells lacking heparan sulfate produced an enhancing effect equivalent to that observed when the GAG and the protein are simultaneously added.

View Article and Find Full Text PDF
Article Synopsis
  • Nuclear receptors rely on coactivator proteins for gene transcription, primarily binding to the conserved LXXLL peptide motif found in many coactivators.
  • Recent findings reveal a new and more complex PXLXXLLXXP binding motif that improves our understanding of how these interactions work.
  • Studies using molecular modeling and X-ray crystallography have identified the critical role of flanking prolines in the α-helix structure, which can inform the design of new drugs to modulate nuclear receptor-coactivator interactions.
View Article and Find Full Text PDF

The quest for therapeutic applications of obestatin involves, as a first step, the determination of its 3D solution structure and the relationship between this structure and the biological activity of obestatin. On this basis, we have employed a combination of circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy, and modeling techniques to determine the solution structure of human obestatin (1). Other analogues, including human non-amidated obestatin (2) and the fragment peptides (6-23)-obestatin (3), (11-23)-obestatin (4), and (16-23)-obestatin (5) have also been scrutinized.

View Article and Find Full Text PDF

The structure of the lignin in the cortex and pith of elephant grass (Pennisetum purpureum) stems was studied both in situ and in isolated milled "wood" lignins by several analytical methods. The presence of p-coumarate and ferulate in the cortex and pith, as well as in their isolated lignins, was revealed by pyrolysis in the presence of tetramethylammonium hydroxide, and by 2D NMR, and indicated that ferulate acylates the carbohydrates while p-coumarate acylates the lignin polymer. 2D NMR showed a predominance of alkyl aryl ether (β-O-4') linkages (82% of total interunit linkages), with low amounts of "condensed" substructures, such as resinols (β-β'), phenylcoumarans (β-5'), and spirodienones (β-1').

View Article and Find Full Text PDF

The interaction of the synthetic pentasaccharide AGA*IA(M) (GlcNS,6S-GlcA-GlcNS,3S,6S-IdoA2S-GlcNS,6S-Me) with the extracellular Ig2 domain of the fibroblast growth factor receptor (FGFR2) has been studied by NMR and computational methods. Analysis of the heparin pentasaccharide in the free state and in the complex indicates the existence of a conformational selection process. Although an equilibrium exists between the (1)C(4) and (2)S(0) conformers (ratio 60:40) of the 2-O-sulfo-α-L-iduronate ring (IdoA2S) in the free state, FGFR2 selects only the unique twisted-boat (2)S(0) conformation of this IdoA2S residue.

View Article and Find Full Text PDF

The structural characteristics of the lignins from flax (Linum usitatissimum) fibers and shives were studied. Significant differences in the content and composition of the lignin from both parts were observed. The lignin contents were 3.

View Article and Find Full Text PDF

Adrenomedullin (AM) is a regulatory peptide which plays many physiological roles including vasodilatation, bronchodilatation, hormone secretion regulation, growth, apoptosis, angiogenesis, and antimicrobial activities, among others. These regulatory activities make AM a relevant player in the pathophysiology of important diseases such as cardiovascular and renal conditions, cancer, and diabetes. Therefore, molecules that target the AM system have been proposed as having therapeutic potential.

View Article and Find Full Text PDF

The effect of a (2,5)B boat conformation on xyloside reactivity has been investigated by studying the hydrolysis and glycosylation of a series of synthetic xyloside analogues based on a 2-oxabicyclo[2.2.2]octane framework, which forces the xylose analogue to adopt a (2,5)B conformation.

View Article and Find Full Text PDF

The binding interactions of two antitumor agents that target the paclitaxel site, docetaxel and discodermolide, to unassembled α/β-tubulin heterodimers and microtubules have been studied using biochemical and NMR techniques. The use of discodermolide as a water-soluble paclitaxel biomimetic and extensive NMR experiments allowed the detection of binding of microtubule-stabilizing agents to unassembled tubulin α/β-heterodimers. The bioactive 3D structures of docetaxel and discodermolide bound to α/β-heterodimers were elucidated and compared to those bound to microtubules, where subtle changes in the conformations of docetaxel in its different bound states were evident.

View Article and Find Full Text PDF

Selective modification/degradation of the main plant polymers (cellulose, hemicelluloses and lignin) was investigated in a hardwood after white and brown-rot fungal decay under environmental conditions. The chemical changes produced in the plant cell wall were analysed in situ, by nuclear magnetic resonance (NMR) at the gel state, and analytical pyrolysis. Two-dimensional (2D) NMR of the white-rotted wood showed only cellulose and (deacetylated) hemicellulose, and the complete removal of lignin.

View Article and Find Full Text PDF

To improve the blood-brain barrier permeability of the trypanocidal lead compound 4,4'-bis(imidazolinylamino)diphenylamine (1), five N-alkoxy analogues were synthesized from bis(4-isothiocyanatophenyl)amine and N-alkoxy-N-(2-aminoethyl)-2-nitrobenzenesulfonamides following successive chemical reactions in just one reactor ("one-pot procedure"). This involved: (a) formation of a thiourea intermediate, (b) removal of the amine protecting groups, and (c) intramolecular cyclization. The blood-brain barrier permeability of the compounds determined in vitro by transport assays through the hCMEC/D3 human cell line, a well-known and characterized human cellular blood-brain barrier model, showed that the N-hydroxy analogue 16 had enhanced blood-brain barrier permeability compared with the unsubstituted lead compound.

View Article and Find Full Text PDF

Lignin changes during plant growth were investigated in a selected Eucalyptus globulus clone. The lignin composition and structure were studied in situ by a new procedure enabling the acquisition of two-dimensional nuclear magnetic resonance (2D-NMR) spectra on wood gels formed in the NMR tube as well as by analytical pyrolysis-gas chromatography-mass spectrometry. In addition, milled-wood lignins were isolated and analyzed by 2D-NMR, pyrolysis-gas chromatography-mass spectrometry, and thioacidolysis.

View Article and Find Full Text PDF

The ability of laccases from Trametes villosa (TvL), Myceliophthora thermophila (MtL), Trametes hirsuta (ThL) and Bacillus subtilis (BsL) to improve the dispersion properties of calcium lignosulfonates 398 in the presence of HBT as a mediator was investigated. Size exclusion chromatography showed an extensive increase in molecular weight of the samples incubated with TvL and ThL by 107% and 572% from 28400 Da after 17h of incubation, respectively. Interestingly, FTIR spectroscopy, (13)C NMR and Py-GC/MS analysis of the treated samples suggested no substantial changes in the aromatic signal of the lignosulfonates, a good indication of the ability of TvL/ThL-HBT systems to limit their effect on functional groups without degrading the lignin backbone.

View Article and Find Full Text PDF

A series of 44 4-aminopiperidine derivatives was screened in vitro against four protozoan parasites (Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani, and Plasmodium falciparum). This screening identified 29 molecules selectively active against bloodstream-form T. b.

View Article and Find Full Text PDF

Here we report the synthesis of a series of polyhydroxylated 3- and 5-acetamido azepanes and detail the molecular basis of their inhibition of family 84 glycoside hydrolases. These family 84 enzymes include human O-GlcNAcase, an enzyme involved in post-translational processing of intracellular proteins modified by O-linked beta-N-acetylglucosamine residues. Detailed structural analysis of the binding of these azepanes to BtGH84, a bacterial homologue of O-GlcNAcase, highlights their conformational flexibility.

View Article and Find Full Text PDF

We report the first chemoenzymatic synthesis of the stable isotope-enriched heparin from a uniformly labeled [(13)C,(15)N]N-acetylheparosan (-GlcA(1,4)GlcNAc-) prepared from E. coli K5. Glycosaminoglycan (GAG) precursors and heparin were formed from N-acetylheparosan by the following steps: chemical N-deacetylation and N-sulfonation leading to N-sulfoheparosan (-GlcA(1,4)GlcNS-); enzyme-catalyzed C5-epimerization and 2-O-sulfonation leading to undersulfated heparin (-IdoA2S(1,4)GlcNS-); enzymatic 6-O-sulfonation leading to the heparin backbone (-IdoA2S(1,4)GlcNS6S-); and selective enzymatic 3-O-sulfonation leading to the anticoagulant heparin, containing the GlcNS6S3S residue.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionjvt5vjmmlus50h3ot4gfj3p7rk677eqh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once