Raman spectroscopy provides non-destructive, label-free quantitative studies of chemical compositions at the microscale as used on NASA's Perseverance rover on Mars. Such capabilities come at the cost of high requirements for instrumentation. Here we present a centimeter-scale miniaturization of a Raman spectrometer using cheap non-stabilized laser diodes, densely packed optics, and non-cooled small sensors.
View Article and Find Full Text PDFGiven the commercial importance of the compounds produced by genetically modified organisms, there is a need for screening methods which facilitate the evaluation of newly developed strains, especially during the phase of proof-of-concept development. We report a time-efficient analysis method for the screening of bacterial strains, which enables the detection of two structurally similar secondary bacterial metabolites. By combining liquid-liquid extraction and surface-enhanced Raman scattering we were able to quantify p-coumaric acid and cinnamic acid, produced by genetically modified E.
View Article and Find Full Text PDFWe present the development of an automated centrifugal microfluidic platform with integrated sample pre-treatment (filtration and liquid-liquid extraction) and detection (SERS-based sensing). The platform consists of eight calibration and four assay modules, fabricated with polypropylene using injection molding and bonded with ultrasonic welding. The platform was used for detection of a secondary bacterial metabolite (p-coumaric acid) from bacterial supernatant.
View Article and Find Full Text PDFDuring the last few decades, great advances have been reached in high-throughput design and building of genetically engineered microbial strains, leading to a need for fast and reliable screening methods. We developed and optimized a microfluidic supported liquid membrane (SLM) extraction device and combined it with surface enhanced Raman scattering (SERS) sensing for the screening of a biological process, namely for the quantification of a bacterial secondary metabolite, p-coumaric acid (pHCA), produced by Escherichia coli. The microfluidic device proved to be robust and reusable, enabling efficient removal of interfering compounds from the real samples, reaching more than 13-fold up-concentration of the donor at 10 μL min flow rate.
View Article and Find Full Text PDFThe number of newly developed genetic variants of microbial cell factories for production of biochemicals has been rapidly growing in recent years, leading to an increased need for new screening techniques. We developed a method based on surface-enhanced Raman scattering (SERS) coupled with liquid-liquid extraction (LLE) for quantification of p-coumaric acid (pHCA) in the supernatant of genetically engineered Escherichia coli (E. coli) cultures.
View Article and Find Full Text PDFBackground: Previous studies in Alzheimer's Disease (AD) suggest a benefit from switching from one cholinesterase (ChE) inhibitor to another in the event of treatment failure on the index agent. This observational, open-label study sought to evaluate the efficacy of the ChE inhibitor rivastigmine on cognition, functional autonomy and behavior in patients with mild-to-moderate AD previously treated with other ChE inhibitors (switched patients) as well as in those previously ChE-inhibitor-naive (de novo users).
Methods: Patients were eligible for a switch if they experienced a lack or loss of efficacy or had experienced intolerance to prior ChE inhibitor therapy.