Publications by authors named "Lidia M D Goncalves"

Recent advances in understanding Alzheimer's disease (AD) suggest the possibility of an infectious etiology, with Porphyromonas gingivalis emerging as a prime suspect in contributing to AD. P. gingivalis may invade systemic circulation via weakened oral/intestinal barriers and then cross the blood-brain barrier (BBB), reaching the brain and precipitating AD pathology.

View Article and Find Full Text PDF

There is a serious need of pediatric drug formulations, whose lack causes the frequent use of extemporaneous preparations obtained from adult dosage forms, with consequent safety and quality risks. Oral solutions are the best choice for pediatric patients, due to administration ease and dosage-adaptability, but their development is challenging, particularly for poorly soluble drugs. In this work, chitosan nanoparticles (CSNPs) and nanostructured lipid carriers (NLCs) were developed and evaluated as potential nanocarriers for preparing oral pediatric solutions of cefixime (poorly soluble model drug).

View Article and Find Full Text PDF

Polymeric-based nano drug delivery systems have been widely exploited to overcome protein instability during formulation. Presently, a diverse range of polymeric agents can be used, among which polysaccharides, such as chitosan (CS), hyaluronic acid (HA) and cyclodextrins (CDs), are included. Due to its unique biological and physicochemical properties, CS is one of the most used polysaccharides for development of protein delivery systems.

View Article and Find Full Text PDF
Article Synopsis
  • * The main mechanism behind PKU involves protein misfolding, making the development of stabilizers to enhance enzyme activity a promising treatment approach.
  • * Researchers discovered that 3-hydroxyquinolin-2(1H)-one derivatives can protect and stabilize the hPAH enzyme, enhancing its function both in isolated studies and cellular models, while also revealing distinct binding interactions with the enzyme's structure.
View Article and Find Full Text PDF

Enzyme nanoencapsulation holds an enormous potential to develop new therapeutic approaches to a large set of human pathologies including cancer, infectious diseases and inherited metabolic disorders. However, enzyme formulation has been limited by the need to maintain the catalytic function, which is governed by protein conformation. Herein we report the rational design of a delivery system based on chitosan for effective encapsulation of a functionally and structurally complex human metabolic enzyme through ionic gelation with tripolyphosphate.

View Article and Find Full Text PDF

Innovative formulations, including solid lipid nanoparticles (SLNs), have been sought to improve skin permeation of non-steroidal anti-inflammatory drugs (NSAIDs). The present study explores the use of SLNs, prepared using a fusion-emulsification method, to increase skin permeation and in vivo activity of two relevant NSAIDs: A liquid molecule (etofenamate) and a solid one (ibuprofen), formulated in a 2% hydroxypropyl methylcellulose gel through the gelation of SLN suspensions. Compritol 888 ATO and Tween 80 were used as a solid lipid and a surfactant, respectively.

View Article and Find Full Text PDF

Oral anti-mycobacterial treatment of Crohn's disease (CD) is limited by the low aqueous solubility of drugs, along with the altered gut conditions of patients, making uncommon their clinical use. Hence, the aim of the present work is focused on the in vitro evaluation of rifabutin (RFB)-loaded Nanostructured lipid carriers (NLC), in order to solve limitations associated to this therapeutic approach. RFB-loaded NLC were prepared by hot homogenization and characterized in terms of size, polydispersity, surface charge, morphology, thermal stability, and drug payload and release.

View Article and Find Full Text PDF

Eradication of Gram-positive biofilms is a critical aspect in implant-associated infection treatment. Although antibiotic-containing particulate carriers may be a promising strategy for overcoming biofilm tolerance, the assessment of their interaction with biofilms has not been fully explored. In the present work, the antibiofilm activity of daptomycin- and vancomycin-loaded poly(methyl methacrylate) (PMMA) and PMMA-Eudragit RL 100 (EUD) microparticles against methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive S.

View Article and Find Full Text PDF

Pharmaceutical approaches based on nanotechnologies and the development of eye drops composed of the mucoadhesive polymers chitosan and hyaluronic acid are emerging strategies for the efficient treatment of ocular diseases. These innovative nanoparticulate systems aim to increase drugs' bioavailability at the ocular surface. For the successful development of these systems, the evaluation of mucoahesiveness (the interaction between the ocular delivery system and mucins present on the eye) is of utmost importance.

View Article and Find Full Text PDF

Solid lipid nanoparticles (SLN) containing rifabutin (RFB), with pulmonary administration purposes, were developed through a technique that avoids the use of organic solvents or sonication. To facilitate their pulmonary delivery, the RFB-loaded SLN were included in microspheres of appropriate size using suitable excipients (mannitol and trehalose) through a spray-drying technique. Confocal analysis microscopy showed that microspheres are spherical and that SLN are efficiently microencapsulated and homogeneously distributed throughout the microsphere matrices.

View Article and Find Full Text PDF

N-Methyl-d-aspartate (NMDA) receptors are fundamental for the normal function of the central nervous system (CNS), and play an important role in memory and learning. Over-activation of these receptors leads to neuronal loss associated with major neurological disorders such as Parkinson's disease, Alzheimer's disease, schizophrenia, and epilepsy. In this study, 22 novel enantiopure bicyclic lactams were designed, synthesized, and evaluated as NMDA receptor antagonists.

View Article and Find Full Text PDF

The aim of the present study was to develop novel Mycobacterium bovis bacille Calmette-Guérin (BCG)-loaded polymeric microparticles with optimized particle surface characteristics and biocompatibility, so that whole live attenuated bacteria could be further used for pre-exposure vaccination against Mycobacterium tuberculosis by the intranasal route. BCG was encapsulated in chitosan and alginate microparticles through three different polyionic complexation methods by high speed stirring. For comparison purposes, similar formulations were prepared with high shear homogenization and sonication.

View Article and Find Full Text PDF

Systemic administration of antitubercular drugs can be complicated by off-target toxicity to cells and tissues that are not infected by Mycobacterium tuberculosis . Delivery of antitubercular drugs via nanoparticles directly to the infected cells has the potential to maximize efficacy and minimize toxicity. The present work demonstrates the potential of solid lipid nanoparticles (SLN) as a delivery platform for rifabutin (RFB).

View Article and Find Full Text PDF

The aim of the present study was to develop novel daptomycin-loaded poly-epsilon-caprolactone (PCL) microparticles with enhanced antibiofilm activity against mature biofilms of clinically relevant bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive Staphylococcus epidermidis. Daptomycin was encapsulated into PCL microparticles by a double emulsion-solvent evaporation method. For comparison purposes, formulations containing vancomycin were also prepared.

View Article and Find Full Text PDF

Next-generation vaccines for tuberculosis should be designed to prevent the infection and to achieve sterile eradication of Mycobacterium tuberculosis. Mucosal vaccination is a needle-free vaccine strategy that provides protective immunity against pathogenic bacteria and viruses in both mucosal and systemic compartments, being a promising alternative to current tuberculosis vaccines. Micro and nanoparticles have shown great potential as delivery systems for mucosal vaccines.

View Article and Find Full Text PDF

The aim of the present study was to develop novel daptomycin-loaded acrylic microparticles with improved release profiles and antibacterial activity against two clinically relevant methicillin-susceptible and methicillin-resistant Staphylococcus aureus strains (MSSA and MRSA, respectively). Daptomycin was encapsulated into poly(methyl methacrylate) (PMMA) and PMMA-Eudragit RL 100 (EUD) microparticles by a double emulsion-solvent evaporation method. For comparison purposes similar formulations were prepared with vancomycin.

View Article and Find Full Text PDF

Strangles is an extremely contagious and sometimes deadly disease of the Equidae. The development of an effective vaccine should constitute an important asset to eradicate this worldwide infectious disease. In this work, we address the development of a mucosal vaccine by using a Supercritical Enhanced Atomization (SEA) spray-drying technique.

View Article and Find Full Text PDF

Strangles is an infectious disease caused by Streptococcus equi subspecies equi that affects the upper respiratory tract of the Equidae. The control of this disease seems to be dependent on its earlier detection and prevention, but prolonged animal protection without development of strong and severe side effects has not yet been achieved. Convalescent horses exhibit a protective immune response, mainly against SeM (58 kDa), an antiphagocytic and opsonogenic S.

View Article and Find Full Text PDF

Plasmodium cysteine proteases have been shown to be immunogenic and are being used as malaria potential serodiagnostic markers and vaccine targets. Genes encoding two Plasmodium chabaudi cysteine proteases chabaupain-1 (CP-1) and chabaupain-2 (CP-2) were identified and further expressed in Escherichia coli. Solubilisation of recombinant CP-1 and CP-2 was achieved by decreasing the temperature of induction.

View Article and Find Full Text PDF

Streptococcus equi subspecies equi is the causative agent of strangles, a bacterial infection of the respiratory tract of equidae. Current strategies to prevent strangles rely on antimicrobial therapy or immunisation with inactivated bacteria, S. equi bacterin, or M-like protein (SeM) extract.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: