Publications by authors named "Lidia Lasecka-Dykes"

Secondary and tertiary RNA structures play key roles in genome replication of single-stranded positive sense RNA viruses. Complex, functional structures are particularly abundant in the untranslated regions of picornaviruses, where they are involved in initiation of translation, priming of new strand synthesis and genome circularization. The 5' UTR of foot-and-mouth disease virus (FMDV) is predicted to include a c.

View Article and Find Full Text PDF

Viruses can evolve to respond to immune pressures conferred by specific antibodies generated after vaccination and/or infection. In this study, an in vitro system was developed to investigate the impact of serum-neutralising antibodies upon the evolution of a foot-and-mouth disease virus (FMDV) isolate. The presence of sub-neutralising dilutions of specific antisera delayed the onset of virus-induced cytopathic effect (CPE) by up to 44 h compared to the untreated control cultures.

View Article and Find Full Text PDF

Non-coding regions of viral RNA (vRNA) genomes are critically important in the regulation of gene expression. In particular, pseudoknot (PK) structures, which are present in a wide range of RNA molecules, have a variety of roles. The 5' untranslated region (5' UTR) of foot-and-mouth disease virus (FMDV) vRNA is considerably longer than in other viruses from the picornavirus family and consists of a number of distinctive structural motifs that includes multiple (2, 3 or 4 depending on the virus strain) putative PKs linked in tandem.

View Article and Find Full Text PDF

RNA structures can form functional elements that play crucial roles in the replication of positive-sense RNA viruses. While RNA structures in the untranslated regions (UTRs) of several picornaviruses have been functionally characterized, the roles of putative RNA structures predicted for protein coding sequences (or open reading frames [ORFs]) remain largely undefined. Here, we have undertaken a bioinformatic analysis of the foot-and-mouth disease virus (FMDV) genome to predict 53 conserved RNA structures within the ORF.

View Article and Find Full Text PDF

High-throughput sequencing such as those provided by Illumina are an efficient way to understand sequence variation within viral populations. However, challenges exist in distinguishing process-introduced error from biological variance, which significantly impacts our ability to identify sub-consensus single-nucleotide variants (SNVs). Here we have taken a systematic approach to evaluate laboratory and bioinformatic pipelines to accurately identify low-frequency SNVs in viral populations.

View Article and Find Full Text PDF

Recombination is one of the determinants of genetic diversity in the foot-and-mouth disease virus (FMDV). FMDV sequences have a mosaic structure caused by extensive intra- and inter-serotype recombination, with the exception of the capsid-encoding region. While these genome-wide patterns of broad-scale recombination are well studied, not much is known about the patterns of recombination that may exist within infected hosts.

View Article and Find Full Text PDF

Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hooved animals that poses a constant burden on farmers in endemic regions and threatens the livestock industries in disease-free countries. Despite the increased number of publicly available whole genome sequences, FMDV data are biased by the opportunistic nature of sampling. Since whole genomic sequences of Southern African Territories (SAT) are particularly underrepresented, this study sequenced 34 isolates from eastern and southern Africa.

View Article and Find Full Text PDF

Nonenveloped viruses protect their genomes by packaging them into an outer shell or capsid of virus-encoded proteins. Packaging and capsid assembly in RNA viruses can involve interactions between capsid proteins and secondary structures in the viral genome, as exemplified by the RNA bacteriophage MS2 and as proposed for other RNA viruses of plants, animals, and human. In the picornavirus family of nonenveloped RNA viruses, the requirements for genome packaging remain poorly understood.

View Article and Find Full Text PDF

The RNA genomes of picornaviruses are translated into single polyproteins which are subsequently cleaved into structural and non-structural protein products. For genetic economy, proteins and processing intermediates have evolved to perform distinct functions. The picornavirus precursor protein, P3, is cleaved to produce membrane-associated 3A, primer peptide 3B, protease 3Cpro and polymerase 3Dpol.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvjelde93cmhjlqubhc9r031oq6o7q5tf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once