Publications by authors named "Lidia Gardner"

Several years following its discovery in 1980, infection with human T-lymphotropic virus type 1 (HTLV-1) was shown to cause HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP), a disease biologically similar to progressive forms of multiple sclerosis (MS). In this manuscript, we review some of the clinical, pathological, and immunological similarities between HAM/TSP and MS with an emphasis on how autoantibodies to an RNA binding protein, heterogeneous nuclear ribonuclear protein A1 (hnRNP A1), might contribute to neurodegeneration in immune mediated diseases of the central nervous system.

View Article and Find Full Text PDF

Background: Neurodegeneration is believed to be the primary cause of permanent, long-term disability in patients with multiple sclerosis. The cause of neurodegeneration in multiple sclerosis appears to be multifactorial. One mechanism that has been implicated in the pathogenesis of neurodegeneration in multiple sclerosis is the targeting of neuronal and axonal antigens by autoantibodies.

View Article and Find Full Text PDF

Objective: Multiple sclerosis (MS) is the most common demyelinating disorder of the central nervous system (CNS). Data suggest that antibodies to CNS targets contribute to the pathogenesis of MS. MS patients produce autoantibodies to heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1).

View Article and Find Full Text PDF

Jean-Martin Charcot has first described multiple sclerosis (MS) as a disease of the central nervous system (CNS) over a century ago. MS remains incurable today, and treatment options are limited to disease modifying drugs. Over the years, significant advances in understanding disease pathology have been made in autoimmune and neurodegenerative components.

View Article and Find Full Text PDF

Apolipoprotein A1 (Apo A-I), the most abundant component of high-density lipoprotein (HDL), is an anti-inflammatory molecule, yet its potential role in the pathogenesis of multiple sclerosis (MS) has not been fully investigated. In this study, Western blot analyses of human plasma showed differential Apo A-I expression in healthy controls compared to MS patients. Further, primary progressive MS patients had less plasma Apo A-I than other forms of MS.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a complex autoimmune disease that impairs the central nervous system (CNS). The neurological disability and clinical course of the disease is highly variable and unpredictable from one patient to another. The cause of MS is still unknown, but it is thought to occur in genetically susceptible individuals who develop disease due to a nongenetic trigger, such as altered metabolism, a virus, or other environmental factors.

View Article and Find Full Text PDF

For years, investigators have sought to prove that myelin antigens are the primary targets of autoimmunity in multiple sclerosis (MS). Recent experiments have begun to challenge this assumption, particularly when studying the neurodegenerative phase of MS. T-lymphocyte responses to myelin antigens have been extensively studied, and are likely early contributors to the pathogenesis of MS.

View Article and Find Full Text PDF

The one-carbon cycle is composed of four major biologically important molecules: methionine (L-Met), S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), and homocysteine (Hcy). In addition to these key metabolites, there are multiple enzymes, vitamins, and cofactors that play essential roles in the cascade of the biochemical reactions that convert one metabolite into another in the cycle. Simultaneous quantitative measurement of four major metabolites can be used to detect possible aberrations in this vital cycle.

View Article and Find Full Text PDF

Abstract A cluster of hydrophobic amino acids at the cytoplasmic end of trans-membranal helix III (TM-III) is a common feature among class-A of G protein-coupled receptors (GPCR). We mutagenized alanine 159(3.53) to glutamic acid and isoleucine160(3.

View Article and Find Full Text PDF

Considering there are no treatments for progressive forms of multiple sclerosis (MS), a comprehensive understanding of the role of neurodegeneration in the pathogenesis of MS should lead to novel therapeutic strategies to treat it. Many studies have implicated viral triggers as a cause of MS, yet no single virus has been exclusively shown to cause MS. Given this, human and animal viral models of MS are used to study its pathogenesis.

View Article and Find Full Text PDF

Antibodies provide the ability to gain novel insight into various events taking place in living systems. The ability to produce highly specific antibodies to target proteins has allowed for very precise biological questions to be addressed. Importantly, antibodies have been implicated in the pathogenesis of a number of human diseases including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), paraneoplastic syndromes, multiple sclerosis (MS) and human T-lymphotropic virus type 1 (HTLV-1) associated myelopathy/tropical spastic paraparesis (HAM/TSP).

View Article and Find Full Text PDF

Multiple sclerosis (MS) patients make antibodies to heterogeneous nuclear ribonuclear protein A1 (hnRNP-A1), a nucleocytoplasmic protein. We hypothesized this autoimmune reaction might contribute to neurodegeneration. Antibodies from MS patients reacted with hnRNP-A1-'M9', its nuclear translocation sequence.

View Article and Find Full Text PDF

ß1-adrenergic receptors (ß1-AR) are internalized in response to agonists and then recycle back for another round of signaling. The serine 312 to alanine mutant of the ß1-AR (S312A) is internalized but does not recycle. We determined that WT ß1-AR and S312A were internalized initially to an early sorting compartment because they colocalized by >70% with the early endosomal markers rab5a and early endosomal antigen-1 (EEA1).

View Article and Find Full Text PDF

We exploited the fact that leukemic cells utilize significantly higher levels of S-adenosylmethionine (SAMe) than normal lymphocytes and developed tools that selectively diminished their survival under physiologic conditions. Using RNA interference gene silencing technology, we modulated the kinetics of methionine adenosyltransferase-II (MAT-II), which catalyzes SAMe synthesis from ATP and l-Met. Specifically, we silenced the expression of the regulatory MAT-IIbeta subunit in Jurkat cells and accordingly shifted the K(m L-Met) of the enzyme 10-15-fold above the physiologic levels of l-Met, thereby reducing enzyme activity and SAMe pools, inducing excessive apoptosis and diminishing leukemic cell growth in vitro and in vivo.

View Article and Find Full Text PDF

Striking individual differences in severity of group A streptococcal (GAS) sepsis have been noted, even among patients infected with the same bacterial strain. We had provided evidence that HLA class II allelic variation contributes significantly to differences in systemic disease severity by modulating host responses to streptococcal superantigens. Inasmuch as the bacteria produce additional virulence factors that participate in the pathogenesis of this complex disease, we sought to identify additional gene networks modulating GAS sepsis.

View Article and Find Full Text PDF

Appropriate trafficking of the beta(1)-adrenergic receptor (beta(1)-AR) after agonist-promoted internalization is crucial for the resensitization of its signaling pathway. Efficient recycling of the beta(1)-AR required the binding of the protein kinase A anchoring protein-79 (AKAP79) to the carboxyl terminus of the beta(1)-AR (Gardner, L. A.

View Article and Find Full Text PDF

Resensitization of G protein-coupled receptors (GPCR) following prolonged agonist exposure is critical for restoring the responsiveness of the receptor to subsequent challenges by agonist. The 3'-5' cyclic AMP-dependent protein kinase (PKA) and serine 312 in the third intracellular loop of the human beta(1)-adrenergic receptor (beta(1)-AR) were both necessary for efficient recycling and resensitization of the agonist-internalized beta(1)-AR (Gardner, L. A.

View Article and Find Full Text PDF
Article Synopsis
  • Competition binding isotherms show that mutations in the beta1-adrenergic receptor (beta1-AR) can affect agonist binding affinities, specifically resulting in a low-affinity single binding site when the lysine at position 324 is mutated to alanine.
  • The K324A mutant demonstrates altered interactions with full and partial agonists, revealing a correlation between their binding affinities and their ability to stimulate adenylyl cyclase, unlike the wild-type receptor.
  • Fluorescence resonance energy transfer assays suggest that the K324A mutant's receptor-G protein interactions differ significantly from those of the wild-type, indicating that the mutation affects the receptor's ability to bind to G(s)
View Article and Find Full Text PDF

Several key amino acids within amphipathic helix 8 of the human beta1-adrenergic receptor (beta1-AR) were mutagenized to characterize their role in signaling by G protein-coupled receptors. Mutagenesis of phenylalanine at position 383 in the hydrophobic interface to histidine (F383H) prevented the biosynthesis of the receptor, indicating that the orientation of helix 8 is important for receptor biosynthesis. Mutagenesis of aspartic acid at position 382 in the hydrophilic interface to leucine (D382L) reduced the binding and uncoupled the receptor from G protein activation.

View Article and Find Full Text PDF

A fundamental question in biology is how the various motifs in G protein-coupled receptors participate in the divergent functions orchestrated by these molecules. Here we describe a fundamental role for a serine residue at position 312 in the third intracellular loop of the human beta(1)-adrenergic receptor (beta(1)-AR) in endocytic recycling of the agonist-internalized receptor. In receptor recycling experiments that were monitored by confocal microscopy, the agonist-internalized wild-type (WT) beta(1)-AR recycled with a t(0.

View Article and Find Full Text PDF