Near Infrared Spectroscopy (NIRS) analysis at the single seed level is a useful tool for breeders, farmers, feeding facilities, and food companies according to current researches. As a non-destructive technique, NIRS allows for the selection and classification of seeds according to specific traits and attributes without alteration of their properties. Critical aspects in using NIRS for single seed analysis such as reference method, sample morphology, and spectrometer suitability are discussed in this review.
View Article and Find Full Text PDFPrevious studies showed that Near Infrared Spectroscopy (NIRS) could distinguish between Roundup Ready® (RR) and conventional soybeans at the bulk and single seed sample level, but it was not clear which compounds drove the classification. In this research the varieties used did not show significant differences in major compounds between RR and conventional beans, but moisture content had a big impact on classification accuracies. Four of the five RR samples had slightly higher moistures and had a higher water uptake than their conventional counterparts.
View Article and Find Full Text PDFIdentification and proper labelling of genetically modified organisms is required and increasingly demanded by legislation and consumers worldwide. In this study, the feasibility of three near infrared reflectance technologies (a chemical imaging unit, a commercial diode array instrument, and a light tube non-commercial instrument) were compared for discriminating Roundup Ready® and not genetically modified soybean seeds. Over 200 seeds of each class (Roundup Ready® and conventional) were used.
View Article and Find Full Text PDFFour near-infrared spectrophotometers, and their associated spectral collection methods, were tested and compared for measuring three soybean single-seed attributes: weight (g), protein (%), and oil (%). Using partial least-squares (PLS) and four preprocessing methods, the attribute that was significantly most easily predicted was seed weight (RPD > 3 on average) and protein the least. The performance of all instruments differed from each other.
View Article and Find Full Text PDF