Biochim Biophys Acta Mol Basis Dis
December 2018
Objective: Electronegative LDL (LDL(-)) is involved in atherosclerosis through the activation of the TLR4/CD14 inflammatory pathway in monocytes. Matrix metalloproteinases (MMP) and their inhibitors (tissue inhibitors of metalloproteinase [TIMP]) are also crucially involved in atherosclerosis, but their modulation by LDL(-) has never been investigated. The aim of this study was to examine the ability of LDL(-) to release MMPs and TIMPs in human monocytes and to determine whether sulodexide (SDX), a glycosaminoglycan-based drug, was able to affect their secretion.
View Article and Find Full Text PDFChronic venous disorders are common vascular pathology of great medical and socioeconomic impact, characterized by a wide spectrum of clinical manifestations occurring with symptoms and/or signs that vary in type and severity. The predominant pathophysiological mechanisms of chronic venous disease start from the development of venous hypertension from shear stress and reflux, leading to endothelial dysfunction and venous wall dilatation. The altered hemodynamic transduces physical signals into harmful bio-molecular pathways, creating a vicious cycle among shear stress, proteolytic remodeling, and inflammatory processes.
View Article and Find Full Text PDFVenous leg ulcer (VLU) is a huge healthcare problem with poorly understood pathophysiology. Transforming growth factor-β (TGF-β) and endoglin (Eng), are inflammatory and wound healing mediators. Eng, co-receptor for TGF-β type-II receptors, may be cleaved forming soluble Eng (sEng), antagonizing TGF-β signaling, a crucial process in vascular pathologies.
View Article and Find Full Text PDFBiochim Biophys Acta
October 2016
Venous leg ulcers (VLUs) produce wound fluid (WF), as a result of inflammatory processes within the wound. It is unclear if WF from different healing phases of VLU has a peculiar biochemical profile and how VLU microenvironment affects the wound healing mechanisms. This study was conducted to evaluate the cytokine/chemokine profiles in WF from distinct VLU phases, in WF- and LPS-stimulated monocytes and treated with glycosaminoglycan Sulodexide, a therapeutic option for VLU healing.
View Article and Find Full Text PDFBiochim Biophys Acta
October 2016
Venous leg ulcers (VLU) are characterized by sustained proteolytic microenvironment impairing the healing process. Wound fluid (WF) reflect the biomolecular activities occurring within the wound area; however, it is unclear if WF from different healing phases have different proteolytic profiles and how VLU microenvironment affects the wound healing mechanisms. We investigated the proteolytic network of WF from distinct VLU phases, and in WF- and LPS-stimulated THP-1 monocytes treated with glycosaminoglycan sulodexide, a well known therapeutic approach for VLU healing.
View Article and Find Full Text PDF