The latency-associated nuclear antigens (LANA) of KSHV and macaque RFHVMn, members of the RV1 rhadinovirus lineage, are closely related with conservation of complex nuclear localization signals (NLS) containing bipartite KR-rich motifs and RG-rich domains, which interact distinctly with importins α and ß1 for nuclear import via classical and non-classical pathways, respectively. RV1 LANAs are expressed in the nucleus of latently-infected cells where they inhibit replication and establish a dominant RV1 latency. Here we show that LANA homologs of macaque RRV and MneRV2 from the more distantly-related RV2 lineage, lack the KR-rich NLS, and instead have a large RG-rich NLS with multiple RG dipeptides and a conserved RGG motif.
View Article and Find Full Text PDFBackground: We investigated the roles of p120 catenin, Cdc42, Rac1, and RhoA GTPases in regulating migration of presomitic mesoderm cells in zebrafish embryos. p120 catenin has dual roles: It binds the intracellular and juxtamembrane region of cadherins to stabilize cadherin-mediated adhesion with the aid of RhoA GTPase, and it activates Cdc42 GTPase and Rac1 GTPase in the cytosol to initiate cell motility.
Results: During gastrulation of zebrafish embryos, knockdown of the synthesis of zygotic p120 catenin δ1 mRNAs with a splice-site morpholino caused lateral widening and anterior-posterior shortening of the presomitic mesoderm and somites and a shortened anterior-posterior axis.
ORF73 latency-associated nuclear antigen (LANA) of the Kaposi's sarcoma-associated herpesvirus (KSHV) is targeted to the nucleus of infected cells where it binds to chromatin and mediates viral episome persistence, interacts with cellular proteins and plays a role in latency and tumorigenesis. A structurally related LANA homolog has been identified in the retroperitoneal fibromatosis herpesvirus (RFHV), the macaque homolog of KSHV. Here, we report the evolutionary and functional conservation of a novel bi-functional nuclear localization signal (NLS) in KSHV and RFHV LANA.
View Article and Find Full Text PDFAFAP-110 has an intrinsic ability to alter actin filament integrity as an actin filament crosslinking protein. This capability is regulated by a carboxy terminal leucine zipper (Lzip) motif. The Lzip motif facilitates self-association stabilizing the AFAP-110 multimers.
View Article and Find Full Text PDFThe actin filament-associated protein and Src-binding partner, AFAP-110, is an adaptor protein that links signaling molecules to actin filaments. AFAP-110 binds actin filaments directly and multimerizes through a leucine zipper motif. Cellular signals downstream of Src(527F) can regulate multimerization.
View Article and Find Full Text PDFAdaptor proteins are specialized protein binding partners that serve to link signaling proteins to each other, as a mechanism to propagate a cellular signal. Ultimately, these signals are required for a specific biological response. Thus, it is important that the cell develop mechanisms to regulate these signaling cascades.
View Article and Find Full Text PDF