Publications by authors named "Lidan Pang"

The common polyvinylidene fluoride (PVDF) membrane itself is susceptible to membrane fouling, especially biofouling, which is a serious threat. In this study, PVDF membrane was modified with ciprofloxacin (CIP) through co-blending to investigate the filtration properties, bacterial inhibition and fouling resistance. Modified membranes were prepared by adding 0.

View Article and Find Full Text PDF

Apoptosis signal regulated kinase 1 (ASK1, MAP3K5) is a member of the mitogen activated protein kinase (MAPK) signaling pathway, involved in cell survival, differentiation, stress response, and apoptosis. ASK1 kinase inhibition has become a promising strategy for the treatment of Non-alcoholic steatohepatitis (NASH) disease. A series of novel ASK1 inhibitors with indazole scaffolds were designed and synthesized, and their ASK1 kinase activities were evaluated.

View Article and Find Full Text PDF

ASK1 kinase inhibition has become a promising strategy for treating inflammatory diseases, such as non-alcoholic steatohepatitis and multiple sclerosis. Here, we reported the discovery of a promising compound 9h (JT21-25) containing quinoline structures as a potent small molecule inhibitor of ASK1. The compound JT21-25 was selective against MAP3K kinases TAK1 (>1960.

View Article and Find Full Text PDF

Apoptosis signal regulated kinase 1 (ASK1, also known as MAP3K5) is a member of the mitogen activated protein kinase kinase kinase (MAP3K) family. Since its first isolation from a human macrophage library in 1996, its research has been ongoing for over 25 years. A large number of reports have revealed that ASK1, as a key activator of the p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK) signaling cascade, responds to various stressors, and its inhibitors have important potential value in the treatment of diseases such as inflammation, cancer, and the nervous system and so on.

View Article and Find Full Text PDF

Antibiotics and antibiotic resistance genes (ARGs) have been frequently detected in the aquatic environment and are regarded as emerging pollutants. The prediction models for the removal effect of four target antibiotics by membrane separation technology were constructed based on back propagation neural network (BPNN) through training the input and output. The membrane separation tests of antibiotics showed that the removal effect of microfiltration on azithromycin and ciprofloxacin was better, basically above 80%.

View Article and Find Full Text PDF

The behavior and removal of six antibiotics, that is, azithromycin, clarithromycin, sulfathiazole, sulfamethoxazole, ciprofloxacin, and tetracycline, in an artificial-controllable urban river (ACUR) were investigated. The ACUR was constructed to form five artificial eco-systems by planting three emergent hydrophytes and Microcystis aeruginosa: (1) Control; (2) MA: M. aeruginosa only; (3) MA-J-C: M.

View Article and Find Full Text PDF