Simultaneous mitigation of Arsenic (As) and Cadmium (Cd) in rice grains is hardly achieved with conventional soil treatments due to their opposite chemical behaviors in paddy soils. This study evaluates the effectiveness of a novel foliar inhibitor with germanium (Ge) -modified zeolitic imidazolate framework (ZIF-8@Ge-132) in cooperative mitigation of As and Cd in rice grains in a As and Cd co-contaminated paddy field, and the effecting mechanisms are elucidated by a series of advanced techniques. The results showed that the grains inorganic As and Cd was remarkably decreased by 45 % and 66 % by the foliar spay of ZIF-8@Ge-132, respectively.
View Article and Find Full Text PDFCadmium (Cd) is a highly toxic heavy metal that is widely distributed in soils at low concentrations. Its volatilization loss occurs at an ashing temperature higher than 350 °C. Accordingly, the accurate determination of its concentration in soils often requires the addition of chemical modifiers by graphite furnace atomic absorption spectrometry (GFAAS) to improve the thermal stability of Cd.
View Article and Find Full Text PDFInnovative paramagnetic one-dimensional (1-D) core-shell Fe-Ag@AgCl visible light-driven photocatalysts are synthesized through a template-assisted electrodeposition method trailed by FeCl in-situ oxidation. The metallic nature of Fe-Ag@AgCl is confirmed through scanning electron microscopy (SEM) and crystal nature through X-ray diffraction (XRD). The controllable diameter of Fe-Ag is obtained through the selection of hollow size of the polycarbonate (PC) template.
View Article and Find Full Text PDF