Combining diagnosis and treatment approaches in one entity is the goal of theranostics for cancer therapy. Magnetic nanoparticles have been extensively used as contrast agents for nuclear magnetic resonance imaging as well as drug carriers and remote actuation agents. Poly(2-oxazoline)-based polymeric micelles, which have been shown to efficiently solubilize hydrophobic drugs and drug combinations, have high loading capacity (above 40% w/w) for paclitaxel.
View Article and Find Full Text PDFAdditive manufacturing has attracted a lot of attention in fabrication of bio medical devices and structures in recent years. 4D printing, a new class of 3D printing where time is considered as a 4th dimension, allows us to build biological structures such as scaffolds, implants, and stents with dynamic performance mimicking the body's natural tissues. In order to properly exploit the capabilities of this fabrication method, understanding and exploiting the shape memory materials is critical.
View Article and Find Full Text PDFWe describe the time-resolved thermal changes in indocyanine green (ICG)-assisted diode laser ablation of dental caries as a potential technique for painless treatment based on the selective photoabsorption and controlled photothermal ablation. Static ablation mode produced a higher temperature rise compared with scanning mode due to localized accumulation of heat. A temperature rise between 45-80 and 70-95 °C was obtained after 20 s that corresponded to 29 and 80 W cm, respectively.
View Article and Find Full Text PDFLiquid microdroplet arrays on surfaces are a promising approach to the miniaturization of laboratory processes such as high-throughput screening. The fluid nature of these droplets poses unique challenges and opportunities in their fabrication and application, particularly for the scalable integration of multiple materials over large areas and immersion into cell culture solution. Here, we use pin spotting and nanointaglio printing to screen a library of lipids and their mixtures for their compatibility with these fabrication processes, as well as stability upon immersion into aqueous solution.
View Article and Find Full Text PDFSpecific size, shape and surface chemistry influence the biological activity of nanoparticles. In the case of lipophilic nanoparticles, which are widely used in consumer products, there is evidence that particle size and formulation influences skin permeability and that lipophilic particles smaller than 6 nm can embed in lipid bilayers. Since most nanoparticle synthetic procedures result in mixtures of different particles, post-synthetic purification promises to provide insights into nanostructure-function relationships.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2014
This paper proposes a generalized method for optical and thermal modeling of synthesized magneto-optical nanoshells (MNSs) for biomedical applications. Superparamagnetic magnetite nanoparticles with diameter of 9.5 ± 1.
View Article and Find Full Text PDF