Publications by authors named "Lickert H"

Single-cell genomic technologies enable the multimodal profiling of millions of cells across temporal and spatial dimensions. However, experimental limitations hinder the comprehensive measurement of cells under native temporal dynamics and in their native spatial tissue niche. Optimal transport has emerged as a powerful tool to address these constraints and has facilitated the recovery of the original cellular context.

View Article and Find Full Text PDF

Intermittent fasting (IF) is a nutritional lifestyle intervention with broad metabolic benefits, but whether the impact of IF depends on the individual's age is unclear. Here, we investigated the effects of IF on systemic metabolism and β cell function in old, middle-aged, and young mice. Short-term IF improves glucose homeostasis across all age groups without altering islet function and morphology.

View Article and Find Full Text PDF
Article Synopsis
  • Metabolic flexibility in skeletal muscle is crucial for healthy glucose and lipid metabolism, and its dysfunction can lead to metabolic diseases.
  • Exercise improves metabolic flexibility and helps identify mechanisms that support metabolic health.
  • The study reveals that pantothenate kinase 4 (PanK4) is vital for muscle metabolism, as its deletion disrupts fatty acid oxidation and elevates harmful acetyl-CoA levels, which lead to glucose intolerance, while increasing PanK4 enhances glucose uptake and lowers acetyl-CoA.
View Article and Find Full Text PDF

Blunted first-phase insulin secretion and insulin deficiency are indicators of β cell dysfunction and diabetes manifestation. Therefore, insights into molecular mechanisms that regulate insulin homeostasis might provide entry sites to replenish insulin content and restore β cell function. Here, we identify the insulin inhibitory receptor (inceptor; encoded by the gene IIR/ELAPOR1) as an insulin-binding receptor that regulates insulin stores by lysosomal degradation.

View Article and Find Full Text PDF

Aims/hypothesis: The aim of this work was to understand the role of non-beta cells in pancreatic islets at early stages of type 2 diabetes pathogenesis.

Methods: Specific clustering was employed to single-cell transcriptome data from islet cells of obese mouse strains differing in their diabetes susceptibility (diabetes-resistant B6.V.

View Article and Find Full Text PDF

Discerning the mechanisms driving type 2 diabetes (T2D) pathophysiology from genome-wide association studies (GWAS) remains a challenge. To this end, we integrated omics information from 16 multi-tissue and multi-ancestry expression, protein, and metabolite quantitative trait loci (QTL) studies and 46 multi-ancestry GWAS for T2D-related traits with the largest, most ancestrally diverse T2D GWAS to date. Of the 1,289 T2D GWAS index variants, 716 (56%) demonstrated strong evidence of colocalization with a molecular or T2D-related trait, implicating 657 -effector genes, 1,691 distal-effector genes, 731 metabolites, and 43 T2D-related traits.

View Article and Find Full Text PDF

Getting mature and functional stem cell-derived, insulin-producing β cells is an important step for disease modeling, drug screening, and cell replacement therapy. In this issue, Hua et al. used single-cell multiomics analysis coupled with chemical screening to identify a crucial role for ceramides in generating mature stem cell-derived β cells.

View Article and Find Full Text PDF
Article Synopsis
  • - A lack of functional β-cells leads to diabetes, and there isn't an effective cell replacement therapy available yet.
  • - Researchers found that inhibiting focal adhesion kinase in adult mice enables certain acinar cells to transform into insulin-producing β-like cells.
  • - This transformation helps restore some β-cell mass and improves glucose control in diabetic mice, suggesting a potential new approach for diabetes treatment.
View Article and Find Full Text PDF

A key pathological feature of Parkinson's Disease (PD) is the progressive degeneration of dopaminergic neurons (DAns) in the substantia nigra pars compacta. Considering the major role of EN1 in the development and maintenance of these DAns and the implications from En1 mouse models, it is highly interesting to study the molecular and protective effect of EN1 also in a human cellular model. Therefore, we generated EN1 knock-out (ko) human induced pluripotent stem cell (hiPSCs) lines and analyzed these during neuronal differentiation.

View Article and Find Full Text PDF

Objective: The glucose-dependent insulinotropic polypeptide (GIP) decreases body weight via central GIP receptor (GIPR) signaling, but the underlying mechanisms remain largely unknown. Here, we assessed whether GIP regulates body weight and glucose control via GIPR signaling in cells that express the leptin receptor (Lepr).

Methods: Hypothalamic, hindbrain, and pancreatic co-expression of Gipr and Lepr was assessed using single cell RNAseq analysis.

View Article and Find Full Text PDF

Insulin resistance is an early complication of diet-induced obesity (DIO), potentially leading to hyperglycaemia and hyperinsulinaemia, accompanied by adaptive β cell hypertrophy and development of type 2 diabetes. Insulin not only signals via the insulin receptor (INSR), but also promotes β cell survival, growth and function via the insulin-like growth factor 1 receptor (IGF1R). We recently identified the insulin inhibitory receptor (inceptor) as the key mediator of IGF1R and INSR desensitization.

View Article and Find Full Text PDF

Objective: The consequences of mutations in genes associated with monogenic forms of diabetes on human pancreas development cannot be studied in a time-resolved fashion in vivo. More specifically, if recessive mutations in the insulin gene influence human pancreatic endocrine lineage formation is still an unresolved question.

Methods: To model the extremely reduced insulin levels in patients with recessive insulin gene mutations, we generated a novel knock-in H2B-Cherry reporter human induced pluripotent stem cell (iPSC) line expressing no insulin upon differentiation to stem cell-derived (SC-) β cells in vitro.

View Article and Find Full Text PDF

Introduction: The molecular programs regulating human pancreatic endocrine cell induction and fate allocation are not well deciphered. Here, we investigated the spatiotemporal expression pattern and the function of the neurogenic differentiation factor 2 (NEUROD2) during human endocrinogenesis.

Methods: Using Crispr-Cas9 gene editing, we generated a reporter knock-in transcription factor (TF) knock-out human inducible pluripotent stem cell (iPSC) line in which the open reading frame of both NEUROD2 alleles are replaced by a nuclear histone 2B-Venus reporter (NEUROD2).

View Article and Find Full Text PDF

The development of single-molecule co-agonists for the glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) is considered a breakthrough in the treatment of obesity and type 2 diabetes. But although GIPR-GLP-1R co-agonism decreases body weight with superior efficacy relative to GLP-1R agonism alone in preclinical and clinical studies, the role of GIP in regulating energy metabolism remains enigmatic. Increasing evidence suggests that long-acting GIPR agonists act in the brain to decrease body weight through the inhibition of food intake; however, the mechanisms and neuronal populations through which GIP affects metabolism remain to be identified.

View Article and Find Full Text PDF

Although multiple pancreatic islet single-cell RNA-sequencing (scRNA-seq) datasets have been generated, a consensus on pancreatic cell states in development, homeostasis and diabetes as well as the value of preclinical animal models is missing. Here, we present an scRNA-seq cross-condition mouse islet atlas (MIA), a curated resource for interactive exploration and computational querying. We integrate over 300,000 cells from nine scRNA-seq datasets consisting of 56 samples, varying in age, sex and diabetes models, including an autoimmune type 1 diabetes model (NOD), a glucotoxicity/lipotoxicity type 2 diabetes model (db/db) and a chemical streptozotocin β-cell ablation model.

View Article and Find Full Text PDF

Spermatogenesis is a crucial biological process that enables the production of functional sperm, allowing for successful reproduction. Proper germ cell differentiation and maturation require tight regulation of hormonal signals, cellular signaling pathways, and cell biological processes. The acrosome is a lysosome-related organelle at the anterior of the sperm head that contains enzymes and receptors essential for egg-sperm recognition and fusion.

View Article and Find Full Text PDF
Article Synopsis
  • - The study highlights the unique molecular characteristics of bone marrow in the skull, contrasting it with other bones and demonstrating its significant role in immune responses within the brain and meninges.
  • - Researchers found that mouse skull marrow exhibits a distinct transcriptomic profile, particularly in relation to neutrophils, and similar proteomic differences were observed in human skull marrow.
  • - Advanced imaging techniques reveal the structural connections between the skull and meninges, and the skull marrow's inflammatory response correlates with neurological disorders, suggesting its potential in diagnosing and treating brain diseases.
View Article and Find Full Text PDF

Background: The reactivation of genetic programs from early development is a common mechanism for injury-induced organ regeneration. T-box 3 (TBX3) is a member of the T-box family of transcription factors previously shown to regulate pluripotency and subsequent lineage commitment in a number of tissues, including limb and lung. TBX3 is also involved in lung and heart organogenesis.

View Article and Find Full Text PDF

Objective: The insulin/insulin-like growth factor 1 (IGF1) pathway is emerging as a crucial component of prostate cancer progression. Therefore, we investigated the role of the novel insulin/IGF1 signaling modulator inceptor in prostate cancer.

Methods: We analyzed the expression of inceptor in human samples of benign prostate epithelium and prostate cancer.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) enhance anticancer immunity by releasing repressive signals into tumor microenvironments (TMEs). To be effective, ICIs require preexisting immunologically "hot" niches for tumor antigen presentation and lymphocyte recruitment. How the mutational landscape of cancer cells shapes these immunological niches remains poorly defined.

View Article and Find Full Text PDF

Impaired proinsulin-to-insulin processing in pancreatic β-cells is a key defective step in both type 1 diabetes and type 2 diabetes (T2D) (refs. ), but the mechanisms involved remain to be defined. Altered metabolism of sphingolipids (SLs) has been linked to development of obesity, type 1 diabetes and T2D (refs.

View Article and Find Full Text PDF

Aims/hypothesis: Glucagon receptor (GCGR) antagonism ameliorates hyperglycaemia and promotes beta cell regeneration in mouse models of type 2 diabetes. However, the underlying mechanisms remain unclear. The present study aimed to investigate the mechanism of beta cell regeneration induced by GCGR antagonism in mice.

View Article and Find Full Text PDF

Insulin is a life-saving drug for patients with type 1 diabetes; however, even today, no pharmacotherapy can prevent the loss or dysfunction of pancreatic insulin-producing β cells to stop or reverse disease progression. Thus, pancreatic β cells have been a main focus for cell-replacement and regenerative therapies as a curative treatment for diabetes. In this Review, we highlight recent advances toward the development of diabetes therapies that target β cells to enhance proliferation, redifferentiation and protection from cell death and/or enable selective killing of senescent β cells.

View Article and Find Full Text PDF
Article Synopsis
  • Silencing of endogenous retroviruses (ERVs) involves repressive modifications—H3K9me3 and DNA methylation—primarily mediated by Setdb1 and Dnmt1.
  • Conditional knock-out of Setdb1 in mouse embryonic endoderm leads to ERV de-repression in visceral endoderm descendants but not in definitive endoderm, indicating different pathways at play.
  • Data reveal that DNA methylation is more crucial for silencing ERVs compared to H3K9me3, highlighting its dominance in maintaining ERV repression in endoderm cells.
View Article and Find Full Text PDF