Publications by authors named "Lichtwark G"

This study used musculoskeletal modelling to explore the relationship between cycling conditions (power output and cadence) and muscle activation and metabolic power. We hypothesized that the cadence that minimized the simulated average active muscle volume would be higher than the cadence that minimized the simulated metabolic power. We validated the simulation by comparing the predicted muscle activation and fascicle velocities with experimental electromyography and ultrasound images.

View Article and Find Full Text PDF

Advanced footwear technologies contain thicker, lightweight, and more resilient midsoles and are associated with improved running economy (RE) compared with traditional footwear. This effect is highly variable with some individuals gaining a greater RE benefit, indicating that biomechanics plays a mediating role with respect to the total effect. Indeed, the energy generated by contractile elements and the elastic energy recovered from stretched tendons and ligaments in the legs and feet are likely to change with footwear.

View Article and Find Full Text PDF
Article Synopsis
  • Eccentric training via Nordic hamstring exercises (NHE) is effective in preventing hamstring strains by promoting changes in muscle structure, specifically increasing muscle fascicle length and adding sarcomeres in series within the muscle fibers.
  • In a study with 12 participants, after 9 weeks of NHE training, the biceps femoris long-head (BFlh) showed significant improvements, including a 19% and 33% increase in fascicle length in the central and distal regions, respectively, along with a 40% increase in knee flexion strength.
  • Following a 3-week period of no training (detraining), muscle adaptations such as fascicle length
View Article and Find Full Text PDF
Article Synopsis
  • The study explores how heavy and sustained loading affects the volume of the Achilles tendon (AT) by examining changes across its length after submaximal contractions.
  • Sixteen healthy participants underwent 3D ultrasound scans to measure regional changes in AT volume before and after exercise.
  • Results showed that all regions of the AT experienced a significant volume reduction, with the mid-region showing the most notable change, suggesting that it may play a key role in tendon adaptation and injury prevention.
View Article and Find Full Text PDF

Accentuated eccentric loading (AEL) involves higher load applied during the eccentric phase of a stretch-shortening cycle movement, followed by a sudden removal of load before the concentric phase. Previous studies suggest that AEL enhances human countermovement jump performance, however the mechanism is not fully understood. Here we explore whether isolating additional load during the countermovement is sufficient to increase ground reaction force, and hence elastic energy stored, at the start of the upward movement and whether this leads to increased jump height or power generation.

View Article and Find Full Text PDF

Owing to the unexplored potential to harness knee extension power during jumping, the current study aimed to examine how joint mechanics were altered with a biologically inspired, passive bi-articular ankle-knee exoskeleton, which could potentially facilitate greater jump height by increasing work production about the knee and ankle. Twenty-five participants (16 males and 9 females, 175.2 ± 8.

View Article and Find Full Text PDF

Measuring or estimating the forces acting on the human body during movement is critical for determining the biomechanical aspects relating to injury, disease and healthy ageing. In this study we examined whether quantifying whole-body motion (segmental accelerations) using a commercial markerless motion capture system could accurately predict three-dimensional ground reaction force during a diverse range of human movements: walking, running, jumping and cutting. We synchronously recorded 3D ground reaction forces (force instrumented treadmill or in-ground plates) with high-resolution video from eight cameras that were spatially calibrated relative to a common coordinate system.

View Article and Find Full Text PDF

Computational musculoskeletal modelling has emerged as an alternative, less-constrained technique to indirect calorimetry for estimating energy expenditure. However, predictions from modelling tools depend on many assumptions around muscle architecture and function and motor control. Therefore, these tools need to continue to be validated if we are to eventually develop subject-specific simulations that can accurately and reliably model rates of energy consumption for any given task.

View Article and Find Full Text PDF

The cost of walking and running on uneven terrain is not directly explained by external mechanical work. Although metabolic cost of transport increases linearly with gradient at uphill and downhill gradients exceeding 15%, at shallower gradients, the relationship is nonlinear, with the minimum cost occurring at ∼10% downhill grade. Given these nonlinear relationships between grade and metabolic cost, we projected a significant difference in the total metabolic cost of two walking conditions that required the same total external mechanical work be performed over the same total period of time; in one condition, time was spent walking to gradients that were fixed at +10.

View Article and Find Full Text PDF

Spring-based passive ankle exoskeletons have been designed to emulate the energy conservation and power amplification roles of biological muscle-tendon units during locomotion. Yet, it remains unknown if similar assistive devices can serve the other elastomechanical role of biological muscle-tendon units - power attenuation. Here we explored the effect of bilateral passive ankle exoskeletons on neuromuscular control and muscle fascicle dynamics in the ankle plantarflexors during rapid, unexpected vertical perturbations.

View Article and Find Full Text PDF

Whilst people typically choose to locomote in the most economical fashion, during bicycling they will, unusually, chose cadences that are higher than metabolically optimal. Empirical measurements of the intrinsic contractile properties of the vastus lateralis (VL) muscle during submaximal cycling suggest that the cadences that people self-selected might allow for optimal muscle fascicle shortening velocity for the production of knee extensor muscle power. It remains unclear, however, whether this is consistent across different power outputs where the self-selected cadence (SSC) varies.

View Article and Find Full Text PDF

Many models have been developed to predict metabolic energy expenditure based on biomechanical proxies of muscle function. However, current models may only perform well for select forms of locomotion, not only because the models are rarely rigorously tested across subtle and broad changes in locomotor task but also because previous research has not adequately characterised different forms of locomotion to account for the potential variability in muscle function and thus metabolic energy expenditure. To help to address the latter point, the present study imposed frequency and height constraints to hopping and quantified gross metabolic power as well as the activation requirements of medial gastrocnemius (MG), lateral gastrocnemius (GL), soleus (SOL), tibialis anterior (TA), vastus lateralis (VL), rectus femoris (RF) and biceps femoris (BF), and the work requirements of GL, SOL and VL.

View Article and Find Full Text PDF

Purpose: To investigate the effect of muscle force during active stretch on quantitative and qualitative indicators of exercise-induced muscle damage (EIMD) in the medial gastrocnemius (MG) muscle.

Methods: Twelve recreationally active volunteers performed two trials of an eccentric heel drop exercise. Participants performed a single bout of low-load (body weight) and high-load (body weight + 30% body weight) exercises on separate legs.

View Article and Find Full Text PDF

Passive elastic ankle exoskeletons have been used to augment locomotor performance during walking, running and hopping. In this study, we aimed to determine how these passive devices influence lower limb joint and whole-body mechanical energetics to maintain stable upright hopping during rapid, unexpected perturbations. We recorded lower limb kinematics and kinetics while participants hopped with exoskeleton assistance (0, 76 and 91 Nm rad) on elevated platforms (15 and 20 cm) which were rapidly removed at an unknown time.

View Article and Find Full Text PDF

Background: During counter movement jumps, adding weight in the eccentric phase and then suddenly releasing this weight during the concentric phase, known as accentuated eccentric loading (AEL), has been suggested to immediately improve jumping performance. The level of evidence for the positive effects of AEL remains weak, with conflicting evidence over the effectiveness in enhancing performance. Therefore, we proposed to theoretically explore the influence of implementing AEL during constrained vertical jumping using computer modelling and simulation and examined whether the proposed mechanism of enhanced power, increased elastic energy storage and return, could enhance work and power.

View Article and Find Full Text PDF

Age-related alterations of skeletal muscle are numerous and present inconsistently, and the effect of their interaction on contractile performance can be nonintuitive. Hill-type muscle models predict muscle force according to well-characterised contractile phenomena. Coupled with simple, yet reasonably realistic activation dynamics, such models consist of parameters that are meaningfully linked to fundamental aspects of muscle excitation and contraction.

View Article and Find Full Text PDF

The iliotibial band (ITB) is a unique anatomical structure that transmits forces from two in-series muscles across the lateral knee. Little is known about how force is transmitted, via ITB strain, in response to muscle activation. We have developed a technique to measure the strain through the distal ITB during isolated contractions of the tensor fascia latae (TFL) muscle, using a Kanade-Lucas-Tomasi ultrasound image tracking algorithm.

View Article and Find Full Text PDF

The integration of electromyography (EMG) and ultrasound imaging has provided important information about the mechanisms of muscle activation and contraction. Unfortunately, conventional bipolar EMG does not allow an accurate assessment of the interplay between the neural drive received by muscles, changes in fascicle length and torque. We aimed to assess the relationship between modulations in tibialis anterior muscle (TA) motor unit (MU) discharge, fascicle length, and dorsiflexion torque using ultrasound-transparent high-density EMG electrodes.

View Article and Find Full Text PDF

Humans have the remarkable ability to run over variable terrains. During locomotion, however, humans are unstable in the mediolateral direction and this instability must be controlled actively-a goal that could be achieved in more ways than one. Walking research indicates that the subtalar joint absorbs energy in early stance and returns it in late stance, an attribute that is credited to the tibialis posterior muscle-tendon unit.

View Article and Find Full Text PDF

Background: During human locomotion, a sufficiently stiff foot allows the ankle plantar flexors to generate large propulsive powers. Increasing foot stiffness (e.g.

View Article and Find Full Text PDF

Objectives: To compare biceps femoris long head (BFlh) muscle tendon unit and fascicle function during Nordic hamstring exercise (NHE) variations with different hip range of motion.

Design: Cross-sectional.

Methods: Twelve healthy volunteers (age: 24 ± 4 years; mass: 77 ± 6 kg; height: 177 ± 4 cm) performed two NHE variations: NHE with hips in neutral (fixed) position (conventional NHE); and NHE with hip flexion/extension.

View Article and Find Full Text PDF

The Achilles tendon (AT) exhibits volume changes related to fluid flow under acute load which may be linked to changes in stiffness. Fluid flow provides a mechanical signal for cellular activity and may be one mechanism that facilitates tendon adaptation. This study aimed to investigate whether isometric intervention involving a high level of load duration and intensity could maximize the immediate reduction in AT volume and stiffness compared with interventions involving a lower level of load duration and intensity.

View Article and Find Full Text PDF

The central nervous system utilizes tendon compliance of the intrinsic foot muscles to aid the foot's arch spring, storing and returning energy in its tendinous tissues. Recently, the intrinsic foot muscles have been shown to adapt their energetic contributions during a variety of locomotor tasks to fulfil centre of mass work demands. However, the mechanism by which the small intrinsic foot muscles are able to make versatile energetic contributions remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • * Muscles in individuals with CP grow abnormally, showing reduced volume, shorter lengths, and other structural deficits by as early as 15 months, which affects their strength and functionality.
  • * The inability of muscle fibers to regenerate effectively, combined with inflammation and changes in muscle structure, contributes to decreased physical activity in CP patients, creating a cycle of muscle disuse and a greater decline in muscle health over time.
View Article and Find Full Text PDF

When rate of force development is increased, neural drive increases. There is presently no accepted explanation for this effect. We propose and experimentally test the theory that a small increase in rate of force development increases medial gastrocnemius fascicle shortening velocity, reducing the muscle's force-generating capacity, leading to active motor units being recruited at lower forces and with increased discharge frequencies.

View Article and Find Full Text PDF