The selenoprotein glutathione peroxidase 2 (GPx2) is expressed in the epithelium of the gastrointestinal tract, where it is thought to be involved in maintaining mucosal homeostasis. To gain novel insights into the role of GPx2, proteomic profiles of colonic tissues either derived from wild type (WT) or GPx2 knockout (KO) mice, maintained under selenium (Se) deficiency or adequate Se supplementation conditions were established and analyzed. Amongst the panel of differentially expressed proteins, the calcium-activated chloride channel regulator 1 (CLCA1) was significantly down-regulated in GPx2 KO versus WT mice regardless of the given Se status.
View Article and Find Full Text PDFThe essential trace element selenium (Se) might play a role in cancer prevention as well as for cancer therapy. Its metabolite methylselenol is able to kill cells through distinct mechanisms including induction of reactive oxygen species, DNA damage and apoptosis. Since methylselenol affects innate immune responses by modulating the expression of NKG2D ligands, the aim of this study was to determine whether the methylselenol generating compound methylseleninic acid (MSA) influences the expression of the MHC class I surface antigens and growth properties thereby reverting immune escape.
View Article and Find Full Text PDFThe essential trace element selenium (Se) is controversially discussed concerning its role in health and disease. Its various physiological functions are largely mediated by Se incorporation in the catalytic center of selenoproteins. In order to gain insights into the impact of Se deficiency and of supplementation with different Se compounds (selenite, selenate, selenomethionine) at defined concentrations (recommended, 150 μg/kg diet; excessive, 750 μg/kg diet) in murine colon tissues, a 20-week feeding experiment was performed followed by analysis of the protein expression pattern of colon tissue specimens by 2D-DIGE and MALDI-TOF MS.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2017
Background: Selenium (Se) exerts its biological activity largely via selenoproteins, which are key enzymes for maintaining the cellular redox homeostasis. However, besides these beneficial effects there is also evidence that an oversupply of Se might increase the risk towards developing metabolic disorders. To address this in more detail, we directly compared effects of feeding distinct Se compounds and concentrations on hepatic metabolism and expression profiles of mice.
View Article and Find Full Text PDFPTMs are defined as covalent additions to functional groups of amino acid residues in proteins like phosphorylation, glycosylation, S-nitrosylation, acetylation, methylation, lipidation, SUMOylation as well as oxidation. Oxidation of proteins has been characterized as a double-edged sword. While oxidative modifications, in particular of cysteine residues, are widely involved in the regulation of cellular homeostasis, oxidative stress resulting in the oxidation of biomolecules along with the disruption of their biological functions can be associated with the development of diseases, such as cancer, diabetes, and neurodegenerative diseases, respectively.
View Article and Find Full Text PDFHydrogen peroxide (H2O2) is involved in various signal transduction pathways and cell fate decisions. The mechanism of the so called "redox signaling" includes the H2O2-mediated reversible oxidation of redox sensitive cysteine residues in enzymes and transcription factors thereby altering their activities. Depending on its intracellular concentration and localization, H2O2 exhibits either pro- or anti-apoptotic activities.
View Article and Find Full Text PDFLipid rafts play a key role in the regulation of fundamentally important cellular processes, including cell proliferation, differentiation, and survival. The composition of such detergent-resistant microdomains (DRMs) is altered under pathologic conditions, including cancer. Although DRMs have been analyzed in colorectal carcinoma little information exists about their composition upon treatment with targeted drugs.
View Article and Find Full Text PDFThe multikinase inhibitors sunitinib, sorafenib, and axitinib have an impact not only on tumor growth and angiogenesis, but also on the activity and function of immune effector cells. In this study, a comparative analysis of the growth inhibitory properties and apoptosis induction potentials of tyrosine kinase inhibitors on T cells was performed. Tyrosine kinase inhibitor treatment resulted in a dramatic decrease in T cell proliferation along with distinct impacts on the cell cycle progression.
View Article and Find Full Text PDFThe clinical outcome of adoptive T cell transfer-based immunotherapies is often limited due to different escape mechanisms established by tumors in order to evade the hosts' immune system. The establishment of an immunosuppressive micromilieu by tumor cells along with distinct subsets of tumor-infiltrating lymphocytes is often associated with oxidative stress that can affect antigen-specific memory/effector cytotoxic T cells thereby substantially reducing their frequency and functional activation. Therefore, protection of tumor-reactive cytotoxic T lymphocytes from oxidative stress may enhance the anti-tumor-directed immune response.
View Article and Find Full Text PDFThe "two-signal paradigm" in T cell activation predicts that the cooperation of "signal 1," provided by the T cell receptor (TCR) through engagement of major histocompatility complex (MHC)-presented peptide, with "signal 2″ provided by costimulatory molecules, the prototype of which is CD28, is required to induce T cell effector functions. While the individual signalling pathways are well understood, little is known about global changes in the proteome pattern during TCR/CD28-mediated activation. Therefore, comparative 2-DE-based proteome analyses of CD3(+) CD69(-) resting T cells versus cells incubated with (i) the agonistic anti-CD3 antibody OKT3 mimicking signal 1 in absence or presence of IL-2 and/or with (ii) the agonistic antibody 15E8 triggering CD28-mediated signaling were performed.
View Article and Find Full Text PDFThe presentation of tumor antigen-derived peptides by human leukocyte antigen (HLA) class I surface antigens on tumor cells is a key prerequisite to trigger effective T-cell responses in cancer patients. Multiple complementary strategies like cDNA and serological expression cloning, reverse immunology and different 'ome'-based methods have been employed to identify potential T-cell targets. This report focuses on a ligandomic profiling approach leading to the identification of 49 naturally processed HLA class I peptide ligands presented on the cell surface of renal cell carcinoma (RCC) cells.
View Article and Find Full Text PDFDespite recent advances in the understanding of the biology of renal cell carcinoma (RCC) and the implementation of novel targeted therapies, the overall 5 years' survival rate for RCC patients remains disappointing. Late presentation, tumor heterogeneity and in particular the lack of molecular biomarkers for early detection and classification represent major obstacles. Global, untargeted comparative analysis of RCC vs tumor adjacent renal epithelium (NN) samples by high throughput analyses both at the transcriptome and proteome level have identified signatures, which might further clarify the molecular differences of RCC subtypes and might allow the identification of suitable therapeutic targets and diagnostic/prognostic biomarkers, but none thereof has yet been implemented in routine clinical use.
View Article and Find Full Text PDFThe prevention of mammary carcinoma by immunological strategies targeting the HER-2/neu receptor has proved to be effective in preclinical models. Thus, a well-characterized HER-2/neu oncogene-driven mammary carcinogenesis model was analysed by various profiling strategies following "triplex" vaccination to identify new candidate targets for breast cancer immunoprevention. 2-DE-based proteomic profiling of preneoplastic and tumour lesions versus normal and aged mammary tissue demonstrated that tumour progression was associated with an up-regulation of molecular chaperones including glucose-regulated protein (GRP)78 and of proteins favouring cell motility, which was in line with the corresponding transcriptomic profiling data.
View Article and Find Full Text PDFBackground: The ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) gene involved in the regulation of cellular ubiquitin levels plays an important role in different cellular processes including cell growth and differentiation. Aberrant expression of UCHL1 has been found in a number of human solid tumors including renal cell carcinoma (RCC). In RCC, UCHL1 overexpression is associated with tumor progression and an altered von Hippel Lindau gene expression.
View Article and Find Full Text PDFProteome-based technologies represent powerful tools for the analysis of protein expression profiles, including the identification of potential cancer candidate biomarkers. Thus, here we provide a comprehensive protein expression map for clear cell renal cell carcinoma established by systematic comparative two-dimensional gel electrophoresis-based protein expression profiling of 16 paired tissue systems comprising clear cell renal cell carcinoma lesions and corresponding tumor-adjacent renal epithelium using overlapping narrow pH gradients. This approach led to the mapping of 348 distinct spots corresponding to 248 different protein identities.
View Article and Find Full Text PDFResults obtained from expression profilings of renal cell carcinoma using different "ome"-based approaches and comprehensive data analysis demonstrated that proteome-based technologies and cDNA microarray analyses complement each other during the discovery phase for disease-related candidate biomarkers. The integration of the respective data revealed the uniqueness and complementarities of the different technologies. While comparative cDNA microarray analyses though restricted to up-regulated targets largely revealed genes involved in controlling gene/protein expression (19%) and signal transduction processes (13%), proteomics/PROTEOMEX-defined candidate biomarkers include enzymes of the cellular metabolism (36%), transport proteins (12%), and cell motility/structural molecules (10%).
View Article and Find Full Text PDFMutated K-ras is frequently found in human malignancies and plays a key role in many signal transduction processes resulting in an altered gene and/or protein expression pattern. Proteins controlled by a constitutive activated mitogen-activated protein kinase pathway are primarily related to alterations in the mitochondrial and nuclear compartments. Therefore, different K-Ras mutants and respective control cells were subjected to two-dimensional gel electrophoresis using basic pH gradients.
View Article and Find Full Text PDFCurr Protoc Immunol
May 2001
Measurement of in vitro cytotoxic function of human T cells can be accomplished by polyclonal stimulation of T cell effectors using anti-CD3 antibody, which stimulates all cytolytic effector cells, or with a specific stimulating antigen. Accordingly, two sets of assays of cytolytic T cell function are described in this unit, one for measuring anti-CD3-mediated cytotoxicity and the other for measuring antigen-specific cytotoxicity. Although the calcein release assay (CARE-LASS) described here is for use with antigen-activated cytotoxic T lymphocytes (CTL) as well as natural killer (NK) or lymphokine-activated killer (LAK) cells, minor changes in the protocols that address polyclonal T cell activation are described that make them suitable for use with calcein-labeled target cells.
View Article and Find Full Text PDFAlthough the human genome has been decoded, the knowledge about the pathogenesis of diseases including cancer is still limited. By focusing on renal cell carcinoma (RCC) we here summarize the data of various research groups analyzing the protein/peptide expression profiles of tumor lesions/cell lines or serum obtained from patients and respective controls. Different powerful approaches such as 2-DE, PROTEOMEX/SERPA/SPEARS, and T cell epitope discovery upon elution of MHC class I-bound peptides in combination with MS/LC-MS/MS revealed 500 differentially expressed proteins.
View Article and Find Full Text PDFKi-ras gene mutations that specifically occur in codons 12, 13 and 61 are involved in the carcinogenesis of acute myeloid leukemia, melanoma and different carcinomas. In order to define potential mutation-specific therapeutic targets, stable transfectants of NIH3T3 cells carrying different Ki-ras4B gene mutations were generated. Wild type Ki-ras transformants, mock transfectants and parental cells served as controls.
View Article and Find Full Text PDFPurpose: Renal cell carcinoma (RCC) accounts for 2% to 3% of all malignancies. It represents one of the most radiation- and chemotherapy-resistant tumors and surgical resections are only effective in organ-defined disease. However, RCC is an immunogenic tumor with response rates to immunotherapies between 10% and 20% of the treated patients.
View Article and Find Full Text PDFMol Cell Proteomics
December 2005
Effective immune strategies for the eradication of human tumors require a detailed understanding of the interaction of tumor cells with the immune system, which might lead to an optimization of T cell responses. To understand the impact of B7-mediated costimulation on T cell activation comprehensive proteome analysis of B7-primed T cell populations were performed. Using this approach we identified different classes of proteins in T cells whose expression is either elevated or reduced upon B7-1- or B7-2-mediated CD28 costimulation.
View Article and Find Full Text PDFIdentification of major histocompatibility complex (MHC)-associated peptides recognized by T-lymphocytes is a crucial prerequisite for the detection and manipulation of specific immune responses in cancer, viral infections, and autoimmune diseases. Unfortunately immunogenic peptides are less abundant species present in highly complex mixtures of MHC-extracted material. Most peptide identification strategies use microcapillary LC coupled to nano-ESI MS/MS in a challenging on-line approach.
View Article and Find Full Text PDFRenal cell carcinoma (RCC) represents one of the most common cancer types in the Western World. One third of the RCC patients had metastasis at presentation with a poor 5-year survival. Nephrectomy is the most important treatment modality of this disease, since most of the RCCs are resistant to cytotoxic chemotherapy and radiation therapy.
View Article and Find Full Text PDFRenal cell carcinoma (RCC) representing the most common neoplasia of the kidney in Western countries is a histologic diverse disease with an often unpredictable course. The prognosis of RCC is worsened with the onset of metastasis, and the therapies currently available are of limited success for the treatment of metastatic RCC. Although gene expression analyses and other methods are promising tools clarifying and standardizing the pathological classification of RCC, novel innovative molecular markers for the diagnosis, prognosis, and for the monitoring of this disease during therapy as well as potential therapeutic targets are urgently needed.
View Article and Find Full Text PDF