Publications by authors named "Lichko L"

Canals are supramolecular complexes observed in the cell wall of Candida maltosa grown in the presence of hexadecane as a sole carbon source. Such structures were not observed in glucose-grown cells. Microscopic observations of cells stained with diaminobenzidine revealed the presence of oxidative enzymes in the canals.

View Article and Find Full Text PDF

Phosphorus compounds are indispensable components of the Earth's biomass metabolized by all living organisms. Under excess of phosphorus compounds in the environment, microorganisms accumulate reserve phosphorus compounds that are used under phosphorus limitation. These compounds vary in their structure and also perform structural and regulatory functions in microbial cells.

View Article and Find Full Text PDF

The role of exopolyphosphatase PPX1 in polyphosphate metabolism in yeasts has been studied in strains of Saccharomyces cerevisiae with inactivated PPX1 and PPN1 genes transformed by the expression vector carrying the yeast PPX1 gene. Exopolyphosphatase activity in transformant strains increased 90- and 40-fold compared to the ΔPPX1 and ΔPPN1 strains, respectively. The purified recombinant exopolyphosphatase PPX1 was similar to the PPX1 of wild strains in its substrate specificity and requirement for divalent metal cations.

View Article and Find Full Text PDF

We have found that extracellular phosphomannan is the main phosphate reserve in the yeast Kuraishia capsulata, in contrast to other yeast species effectively absorbing Pi. Under nitrogen starvation, K. capsulata absorbed essentially all Pi from the medium containing 240 mM glucose, 2.

View Article and Find Full Text PDF

Partially purified endopolyphosphatase from cytosol of the yeast Saccharomyces cerevisiae with inactivated genes PPX1 and PPN1 encoding exopolyphosphatases was obtained with ion-exchange and affinity chromatography. The enzyme activity was estimated by decrease of polyphosphate chain length determined by PAGE. The enzyme cleaved inorganic polyphosphate without the release of orthophosphate (P(i)) and was inhibited by heparin and insensitive to fluoride.

View Article and Find Full Text PDF

Current data concerning the crucial role of inorganic polyphosphates (polyP) in mitochondrial functions and dysfunctions in yeast and animal cells are reviewed. Biopolymers with short chain length (approximately 15 phosphate residues) were found in the mitochondria of Saccharomyces cerevisiae. They comprised 7-10% of the total polyP content of the cell.

View Article and Find Full Text PDF

Endopolyphosphatase activity has been revealed in cytosol preparations of the yeast Saccharomyces cerevisiae with inactivated PPX1 and PPN1 genes encoding exopolyphosphatases. The enzyme cleaves inorganic polyphosphates with chain length of 15 to 208 phosphate residues to shorter chains without the release of orthophosphate (P(i)). The long chain polyphosphates are cleaved with preference over the short ones.

View Article and Find Full Text PDF

Cytosol polyphosphates (polyPs) are the main phosphate (P(i)) reserve in the yeast Saccharomyces cerevisiae. In this work, the participation of cytosol polyPs and exopolyphosphatases in maintenance of P(i) homeostasis under P(i) deficit in the cultivation medium has been studied in different strains of S. cerevisiae.

View Article and Find Full Text PDF

The cytosol, nuclei, vacuoles, and mitochondria of the yeast Saccharomyces cerevisiae possess inorganic polyphosphates (polyPs). PolyP levels, spectra of polyP chain lengths, and their dependence on the growth phase are distinguished in the mentioned compartments. Inactivation of the PPX1 gene has no effect on the polyP metabolism under cultivation of the yeast in medium with glucose and 5-7 mM P(i).

View Article and Find Full Text PDF

Inactivation of the PPN1 gene, encoding one of the enzymes involved in polyphosphate metabolism in the yeast Saccharomyces cerevisiae, was found to decrease exopolyphosphatase activity in the cytosol and vacuoles. This effect was more pronounced in the stationary growth phase than in the phase of active growth. The gene inactivation resulted in elimination of a approximately 440-kDa exopolyphosphatase in the vacuoles but did not influence a previously unknown vacuolar exopolyphosphatase with a molecular mass of >1000 kDa, which differed from the former enzyme in the requirement for bivalent cations and sensitivity to heparin.

View Article and Find Full Text PDF

Nuclei of the yeast Saccharomyces cerevisiae possess inorganic polyphosphates (polyP) with chain lengths of ca. 10-200 phosphate residues. Subfractionation of the nuclei reveals that the most part of polyP is not associated with DNA.

View Article and Find Full Text PDF

Purified fractions of cytosol, vacuoles, nuclei, and mitochondria of Saccharomyces cerevisiae possessed inorganic polyphosphates with chain lengths characteristic of each individual compartment. The most part (80-90%) of the total polyphosphate level was found in the cytosol fractions. Inactivation of a PPX1 gene encoding ~40-kDa exopolyphosphatase substantially decreased exopolyphosphatase activities only in the cytosol and soluble mitochondrial fraction, the compartments where PPX1 activity was localized.

View Article and Find Full Text PDF

The inactivation of the PPX1 and PPN1 genes, which encode the major enzymes of polyphosphate degradation (exopolyphosphatase and endopolyphosphatase, respectively), was found to exert different effects on the content of different polyphosphates in the yeast Saccharomyces cerevisiae. The content of relatively low-molecular-weight acid-soluble polyphosphates in mutant yeast strains is inversely proportional to the exopolyphosphatase activity of the cytosol. At the same time, the mutation of these genes exerts no effect on salt-soluble polyphosphates.

View Article and Find Full Text PDF

The review presents the recent data demonstrating the important role high-molecular inorganic polyphosphates in regulatory processes in a yeast cell. It has been shown that polyphosphates are localized in different cell compartments, where they are metabolized by a special set of enzymes. The review presents the evidence in favor of the concept of multiple functions of these biopolymers in a cell, as well as the data on the pleiotropic effects of mutations in the genes encoding the enzymes of polyphosphate metabolism.

View Article and Find Full Text PDF

Saccharomyces cerevisiae possesses multiple forms of exopolyphosphatases, the enzymes involved in the metabolism of inorganic polyphosphates, which are important regulatory compounds. In S. cerevisiae, inactivation of endopolyphosphatase gene PPN1 leads to the inhibition of expression of both exopolyphosphatase PPX1 and high-molecular-mass exopolyphosphatase of approximately 1000 kDa not encoded by PPX1.

View Article and Find Full Text PDF

Inactivation of PPX1 encoding the major cytosolic exopolyphosphatase PPX1 in Saccharomyces cerevisiae did not alter exopolyphosphatase activity of the isolated nuclei compared with that in the parent strain. The nuclear exopolyphosphatase of the S. cerevisiae strain deficient in the PPX1 gene was purified 10-fold.

View Article and Find Full Text PDF

Vernal pools are vulnerable to loss through development and agricultural and forestry practices owing to their isolation from open water bodies and their small size. Some vernal pool-dependent species are already listed in New England as Endangered, Threatened, or Species of Special Concern. Vernal pool creation is becoming more common in compensatory mitigation as open water ponds, in general, may be easier to create than wooded wetlands.

View Article and Find Full Text PDF

Inactivation of PPX1 encoding exopolyphosphatase PPX1 in Saccharomyces cerevisiae results in a change in the exopolyphosphatase spectrum in the yeast cells. In the PPX1-deficient strain, elimination of an approximately 45 kD exopolyphosphatase is observed in the cytosol, and activity of an exopolyphosphatase with molecular mass of approximately 830 kD increases fivefold. The latter activity differs greatly in properties from the low-molecular-mass enzyme of the parent strain.

View Article and Find Full Text PDF

Intact nuclei from a parental strain CRY and a PPX1-mutant CRX of Saccharomyces cerevisiae were isolated and found to be essentially free of cytoplasmic, mitochondrial and vacuolar marker enzymes. The protein-to-DNA ratios of the nuclei were 22 and 30 for CRY and CRX nuclei, respectively. An exopolyphosphatase (exopolyPase) with molecular mass of approximately 57 kDa and a pyrophosphatase (PPase) of approximately 41 kDa were detected in the parental strain CRY.

View Article and Find Full Text PDF

Separate compartments of the yeast cell possess their own exopolyphosphatases differing from each other in their properties and dependence on culture conditions. The low-molecular-mass exopolyphosphatases of the cytosol, cell envelope, and mitochondrial matrix are encoded by the PPX1 gene, while the high-molecular-mass exopolyphosphatase of the cytosol and those of the vacuoles, mitochondrial membranes, and nuclei are presumably encoded by their own genes. Based on recent works, a preliminary classification of the yeast exopolyphosphatases is proposed.

View Article and Find Full Text PDF

Inactivation of PPX1 encoding a major exopolyphosphatase (PPX1) in Saccharomyces cerevisiae results in a change of exopolyphosphatase spectra in the yeast cells. In the PPX1-deficient strain, an elimination of approximately 45 kDa enzyme is observed in cytosol and cell envelopes, and the activity of an exopolyphosphatase with a molecular mass of approximately 830 kDa increases 5-fold in the cytosol. These two enzyme activities differ greatly from each other not only in molecular masses but also in biochemical properties.

View Article and Find Full Text PDF

A polyphosphatase with the specific activity 2.2 U/mg was purified to apparent homogeneity from a soluble preparation of mitochondria of Saccharomyces cerevisiae. The polyphosphatase is a monomeric protein of approximately 41 kD.

View Article and Find Full Text PDF

This review covers some trends and approaches to the study of inorganic polyphosphates that originated from the fruitful ideas and pioneering works of A. N. Belozersky.

View Article and Find Full Text PDF