Microplastics (MPs) commonly coexist with microalgae in aquatic environments, can heteroaggregate during their interaction, and potentially affect the migration and impacts of MPs in aquatic environments. The hetero-aggregation may also influence the fate of other pollutants through MPs' adsorption or alter their aquatic toxicity. Here, we explored the hetero-aggregation process and its key driving mechanism that occurred between green microalga Chlorella vulgaris (with a cell size of 2-10 μm) and two types of MPs (polystyrene and polylactide, 613 μm).
View Article and Find Full Text PDFThe discharge of aquaculture wastewater, comprising nitrogen, phosphorus, heavy metals, and antibiotics from large-scale aquaculture, poses a significant threat to marine ecosystems and human health. Consequently, addressing the treatment of marine aquaculture wastewater is imperative. Conventional physicochemical treatment methods have various limitations, whereas microalgae-based biological treatment technologies have gained increasing attention in the field of water purification due to their ability to efficiently absorb organic matter from mariculture wastewater and convert CO₂ into biomass products.
View Article and Find Full Text PDFMicroplastics in marine environments come from various sources, and over the years, their buildup in marine environments suggests an inevitable need for the safe mitigation of plastic pollution. Microplastics are one of the chief and hazardous components of marine pollution, as they are transferred through the food chain to different trophic levels, affecting living organisms. They are also a source of transfer for pathogenic organisms.
View Article and Find Full Text PDFCompared with the fossil-based plastics, biodegradable plastics are more easily decomposed into small-sized particles (e.g., microplastics).
View Article and Find Full Text PDFIn recent years, aquaculture has expanded rapidly to address food scarcity and provides high-quality aquatic products. However, this growth has led to the release of significant effluents, containing emerging contaminants like antibiotics, microplastics (MPs), and antibiotic resistance genes (ARGs). This study investigated the occurrence and interactions of these pollutants in aquaculture environment.
View Article and Find Full Text PDFMicroplastics (MPs) in soil can influence CO dynamics by altering organic carbon (OC) and microbial composition. Nevertheless, the fluctuation of CO response attributed to MPs in mangrove sediments is unclear. This study explores the impact of micro-sized polypropylene (mPP) particles on the carbon dynamics of intertidal mangrove sediments.
View Article and Find Full Text PDFMetformin is a synthetic biguanide proven to have beneficial effects against various human diseases. Research has confirmed that metformin exerts its effects by regulating the composition of intestinal microbiota. The composition of intestinal microbiota influences the efficacy of anti-PD-L1 immunotherapy.
View Article and Find Full Text PDFDespite growing interest in conventional microplastics (CMPs) and their toxicological effects on aquatic species, little is known about biodegradable microplastics (BMPs) and their corresponding implications for aquatic life. Here, tilapia (Oreochromis mossambicus) were semi-statically exposed for 14 days to the bio-based plastic polylactic acid (PLA, 100 μg/L, 2.52 ± 0.
View Article and Find Full Text PDFExisting studies have shown that microplastics (MPs) as artificial surfaces can be colonized by plankton microorganisms. However, systematic research on exploring the aggregation formation process of MPs and microalgae is still lacking and particularly the influencing factors of aggregation remain to be elucidated. Therefore, this study investigated the heterogeneous aggregation process between various microalgal species (i.
View Article and Find Full Text PDFThe leaching of microplastics (MPs) additives and their negative effects on aquatic organisms remain to be systematically elucidated. In this study, the toxicological effects of MPs leachate (micro-sized polyethylene (mPE) and micro-sized polyvinyl chloride (mPVC) acceleratedly leached by UVA for 15, 90, and 180 days in seawater) on microalga Chlorella vulgaris in terms of cell growth inhibition, oxidative stress, and transcriptomes were investigated. The leachate components of MPs aged for 90 days were further identified to elucidate the corresponding toxicity mechanisms of MPs on microalgal cells.
View Article and Find Full Text PDFTechnology innovation is the key driving force in achieving economic transformation and development. Financial development and the expansion of higher education can promote technological progress primarily by easing financing constraints and improving the level of human capital. This study examines the impact of financial development and higher education expansion on green technology innovation.
View Article and Find Full Text PDFAs one of the emerging pollutants, microplastics (MPs; <5 mm) can interact with co-contaminants such as petroleum in marine aquatic systems, and their combined toxicity has not been fully investigated. Therefore, this study focused on pollutants such as micro-sized polyethylene (mPE) and petroleum, aiming to explore their single and combined toxicities to microalga Chlorella vulgaris in terms of the cell growth, antioxidative enzymes, and nutrients utilization. The results showed that the MPs alone (particle sizes (i.
View Article and Find Full Text PDFMicro (nano)plastics pollution is a noxious menace not only for mankind but also for marine life, as removing microplastics (MPs) is challenging due to their physiochemical properties, composition, and response toward salinity and pH. This review provides a detailed assessment of the MPs pollution in different water types, environmental implications, and corresponding treatment strategies. With the advancement in nanotechnology, mitigation strategies for aqueous pollution are seen, especially due to the fabrication of nanosheets/membranes mostly utilized as a filtration process.
View Article and Find Full Text PDFAlthough microplastics (MPs; <5 mm) may interact with co-contaminants (e.g., petroleum) in marine aquatic systems, little is known about their combined toxicity.
View Article and Find Full Text PDFRecently, biodegradable plastics (BPs) as an alternative of conventional plastics have been widely advocated and applied. However, there is still a large research gap between the formation of secondary microplastics (MPs) and colonized microorganisms on their surface under long-term aging in different environments. In this study, the generation of secondary MPs and the formation of surface biofilms on the micro-sized (3-5 mm) biodegradable plastic poly (butyleneadipate-co-terephthalate) (BP-PBAT) and conventional plastic polyvinyl chloride (CP-PVC) under long-term UV aging was investigated.
View Article and Find Full Text PDFThe use of biodegradable plastics (BPs) has been widely promoted in recent years, but before their complete degradation, the phase of microplastics (MPs) is inevitable. However, little information concerning the production of MPs from blended polymers is available. This study aimed to explore the characteristics of MPs produced from blended plastics and the development of biofilms on plastic surfaces under long-term aging.
View Article and Find Full Text PDFAlthough microplastics (MPs) are known to be found in global oceans, their influencing factors and abundance in the deep sea remain largely unknown. Twenty-six surface sediment samples were collected in the deep basin of the Eastern Indian Ocean (EIO). This study showed that MPs abundance ranged from 30.
View Article and Find Full Text PDFMicroplastics (MPs) implications in the atmosphere are of current global concern. Currently, there is a growing interest regarding source appointment, fate, level of toxicity, and exposure intensity of ambient air MPs. Recent data suggest that polyethylene (PE) dominates ambient MPs in China's megacities.
View Article and Find Full Text PDFIt has been demonstrated that some conventional microplastics (CMPs) have toxicities to organisms, however, whether biodegradable microplastics (BMPs) have similar potential risks to marine ecosystems remains to be elucidated. Therefore, this study aimed to investigate i) the effects of CMPs (i. e.
View Article and Find Full Text PDFMicroplastics (MPs; <5 mm) and oil pollution have been receiving global attention. To date, the adsorption mechanism of petroleum by MPs is largely unknown. This study investigated the adsorption of petroleum on micro-sized polyethylene (mPE) undergoing aging (days 0, 15, 30, 90 and 180).
View Article and Find Full Text PDFDissolved organic matter (DOM) chemodiversity plays an important role in regulating nutrient cycles and contaminant behavior in soil. However, how biodegradable microplastic (MPs) affect the DOM chemodiversity is still unknown, although developing biodegradable plastics are regarded as a promising strategy to minimize the risks of MPs residues in soil. Here, with the common poly (butylene adipate-co-terephthalate) (PBAT) as the model, the molecular effect of biodegradable MPs on soil DOM was explored by adding 0%, 5% and 10% (w/w) of PBAT to tropical latosol, respectively.
View Article and Find Full Text PDFTo date, the degradation of microplastics (MPs; <5 mm) in different environments, particularly their adsorption characteristics for coexisted metal pollutants remains to be elucidated. Thus, this study investigated the effects of aging MPs, including polyamide (mPA), polyethylene terephthalate (mPET), polystyrene (mPS), and polyvinyl chloride (mPVC) for 3 months under UVA irradiation in four environmental media (air, seawater, sand, and soil) and adsorption of heavy metals (Cu, Cd) onto seawater-aged mPS and mPVC. The results showed that surface morphological changes, including cracks, oxidized particles, and wrinkles, appeared on aged MPs.
View Article and Find Full Text PDFEnvironmental aging of ubiquitous microplastics (MP) occurs through the action of biotic and abiotic factors, and aged MP exhibit different physicochemical properties and environmental behavior from virgin MP. This study aimed to investigate the aged micro-sized polystyrene (mPS) and polyvinyl chloride (mPVC), and the heavy metals copper (Cu) and cadmium (Cd), and examine the effects of their combined toxicities on microalga Chlorella vulgaris. Results showed that the presence of MP inhibited cell growth as compared with the control, the inhibition rate (I) decreased as concentrations of MP rose and aged MP exhibited stronger inhibition of cells than did virgin MP.
View Article and Find Full Text PDF