Publications by authors named "Lichao Jiao"

Background: Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma which possess highly aggressive and heterogeneous. Despite advances in understanding heterogeneity and development of novel targeted agents, the prognosis of DLBCL patients remains unsatisfied. Lipids are crucial components of biological membranes and signal transduction while accumulating evidence has supported the vital roles of abnormal lipid metabolism in tumorigenesis.

View Article and Find Full Text PDF

Background: Traditional method of wood species identification involves the use of hand lens by wood anatomists, which is a time-consuming method that usually identifies only at the genetic level. Computer vision method can achieve "species" level identification but cannot provide an explanation on what features are used for the identification. Thus, in this study, we used computer vision methods coupled with deep learning to reveal interspecific differences between closely related tree species.

View Article and Find Full Text PDF

Background And Aims: Secondary cell wall (SCW) thickening is a major cellular developmental stage determining wood structure and properties. Although the molecular regulation of cell wall deposition during tracheary element differentiation has been well established in primary growth systems, less is known about the gene regulatory processes involved in the multi-layered SCW thickening of mature trees.

Methods: Using third-generation [long-read single-molecule real-time (SMRT)] and second-generation [short-read sequencing by synthesis (SBS)] sequencing methods, we established a Pinus bungeana transcriptome resource with comprehensive functional and structural annotation for the first time.

View Article and Find Full Text PDF

The high economic value and increased demand for timber have led to illegal logging and overexploitation, threatening wild populations. In this context, there is an urgent need to develop effective and accurate forensic tools for identifying endangered Guibourtia timber species to protect forest ecosystem resources and regulate their trade. In this study, a hybridization capture method was developed and applied to explore the feasibility of retrieving complete plastid genomes from Guibourtia sapwood and heartwood specimens stored in a xylarium (wood collection).

View Article and Find Full Text PDF

Spatial organization and connectivity of wood rays in Pinus massoniana was comprehensively viewed and regarded as anatomical adaptions to ensure the properties of rays in xylem. Spatial organization and connectivity of wood rays are essential for understanding the wood hierarchical architecture, but the spatial information is ambiguous due to small cell size. Herein, 3D visualization of rays in Pinus massoniana was performed using high-resolution μCT.

View Article and Find Full Text PDF

Pits in ray parenchyma cells are important to understand the functional anatomy of the ray parenchyma network in the xylem but have been less studied. Herein, pits in two types of ray parenchyma cells, contact cells and isolation cells, across different developmental stages were qualitatively studied using 48-year-old Populus tomentosa trees. The timing of differentiation and death was determined by histochemical staining and polarized light microscopy.

View Article and Find Full Text PDF

Mountain-agarwood plays an important role in ethnic medicine in China for its pharmaceutical value. Modern pharmacological researches demonstrated that mountain-agarwood was effective for its anti-myocardial ischemia, antibacterial, anti-inflammatory, antitumor and analgesic effects. Mountain-agarwood derives from the peeled roots, stems or twigs of Syringa pinnatifolia which belongs to Syringa genus.

View Article and Find Full Text PDF

A method for extraction of wood DNA and a strategy for designing high-resolution barcodes for wood were developed. Ycf1b was the prioritized barcode to resolve the Pterocarpus wood species studied. DNA barcoding, an effective tool for wood species identification, mainly focuses on universal barcodes and often lacks high resolution to differentiate species, especially for closely related taxa within the same genus.

View Article and Find Full Text PDF

Machine-learning approaches (MLAs) for DNA barcoding outperform distance- and tree-based methods on identification accuracy and cost-effectiveness to arrive at species-level identification of wood. DNA barcoding is a promising tool to combat illegal logging and associated trade, and the development of reliable and efficient analytical methods is essential for its extensive application in the trade of wood and in the forensics of natural materials more broadly. In this study, 120 DNA sequences of four barcodes (ITS2, matK, ndhF-rpl32, and rbcL) generated in our previous study and 85 downloaded from National Center for Biotechnology Information (NCBI) were collected to establish a reference data set for six commercial Pterocarpus woods.

View Article and Find Full Text PDF

DNA barcoding has been proposed as a useful tool for forensic wood identification and development of a reliable DNA reference library is an essential first step. Xylaria (wood collections) are potentially enormous data repositories if DNA information could be extracted from wood specimens. In this study, 31 xylarium wood specimens and 8 leaf specimens of six important commercial species of Pterocarpus were selected to investigate the reliability of DNA barcodes for authentication at the species level and to determine the feasibility of building wood DNA barcode reference libraries from xylarium specimens.

View Article and Find Full Text PDF

ITS2+ trnH - psbA was the best combination of DNA barcode to resolve the Dalbergia wood species studied. We demonstrate the feasibility of building a DNA barcode reference database using xylarium wood specimens. The increase in illegal logging and timber trade of CITES-listed tropical species necessitates the development of unambiguous identification methods at the species level.

View Article and Find Full Text PDF