Publications by authors named "Lichan Tu"

The MYB transcription factor (TF) family is one of the largest families in plants and performs highly diverse regulatory functions, particularly in relation to pathogen/pest resistance, nutrient/noxious substance absorption, drought/salt resistance, trichome growth, stamen development, leaf senescence, and flavonoid/terpenoid biosynthesis. Owing to their vital role in various biological regulatory processes, the mechanisms of MYB TFs have been extensively studied. Notably, MYB TFs not only directly regulate targets, such as phytohormones, reactive oxygen species signaling and secondary cell wall formation, but also serve as crucial points of crosstalk between these signaling networks.

View Article and Find Full Text PDF

Background: Sanqi, the root of Panax notoginseng, has long been recognized for its therapeutic effects on cardiovascular diseases. Saponins, including ginsenosides and notoginsenosides, are the main bioactive components of P. notoginseng.

View Article and Find Full Text PDF

Celastrol is a bioactive pentacyclic triterpenoid with promising therapeutic effects that is mainly distributed in Celastraceae plants. Although some enzymes involved in the celastrol biosynthesis pathway have been reported, many biosynthetic steps remain unknown. Herein, transcriptomics and metabolic profiles of multiple species in Celastraceae were integrated to screen for cytochrome P450s (CYPs) that are closely related to celastrol biosynthesis.

View Article and Find Full Text PDF

The oxidosqualene cyclase (OSC) catalyzed cyclization of the linear substrate (3S)-2,3-oxidosqualene to form diverse pentacyclic triterpenoid (PT) skeletons is one of the most complex reactions in nature. Friedelin has a unique PT skeleton involving a fascinating nine-step cation shuttle run (CSR) cascade rearrangement reaction, in which the carbocation formed at C2 moves to the other side of the skeleton, runs back to C3 to yield a friedelin cation, which is finally deprotonated. However, as crystal structure data of plant OSCs are lacking, it remains unknown why the CSR cascade reactions occur in friedelin biosynthesis, as does the exact catalytic mechanism of the CSR.

View Article and Find Full Text PDF

CYP72D19, the first functional gene of the CYP72D subfamily, catalyzes the C-2 hydroxylation of abietane-type diterpenoids. The abietane-type diterpenoids, e.g.

View Article and Find Full Text PDF

Triptolide is a valuable multipotent antitumor diterpenoid in Tripterygium wilfordii, and its C-14 hydroxyl group is often selected for modification to enhance both the bioavailability and antitumor efficacy. However, the mechanism for 14-hydroxylation formation remains unknown. Here, we discover 133 kb of tandem duplicated CYP82Ds encoding 11 genes on chromosome 12 and characterize CYP82D274 and CYP82D263 as 14-hydroxylases that catalyze the metabolic grid in triptolide biosynthesis.

View Article and Find Full Text PDF

Terpenoids are a class of significant bioactive components in the woody vine of . Previous studies have shown that MYB transcription factors play important roles in plant secondary metabolism, growth, and developmental processes. However, the MYB involved in terpenoid biosynthesis in are unknown.

View Article and Find Full Text PDF

is a valuable medicinal plant rich in biologically active diterpenoids, but there are few studies on the origins of these diterpenoids in its secondary metabolism. Here, we identified three regions containing tandemly duplicated diterpene synthase genes on chromosomes (Chr) 17 and 21 of and obtained 11 diterpene synthases with different functions. We further revealed that these diterpene synthases underwent duplication and rearrangement at approximately 2.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers analyzed various seed characteristics (size, viability, moisture content, etc.) and tested different treatments, discovering that soaking in 100 mg·L~(-1) GA_3 solution significantly improved germination.
  • * High concentrations of GA_3 (500 mg·L~(-1) and 1,000 mg·L~(-1)) cut the germination time down from over 3 months to under 15 days, aiding in effective breeding and propagation of the species.
View Article and Find Full Text PDF

Triterpenes are among the most diverse plant natural products, and their diversity is closely related to various triterpene skeletons catalyzed by different 2,3-oxidosqualene cyclases (OSCs). Celastrol, a friedelane-type triterpene with significant bioactivities, is specifically distributed in higher plants, such as Celastraceae species. Friedelin is an important precursor for the biosynthesis of celastrol, and it is synthesized through the cyclization of 2,3-oxidosqualene, with the highest number of rearrangements being catalyzed by friedelane-type triterpene cyclases.

View Article and Find Full Text PDF

A novel cytochrome P450 from Tripterygium wilfordii, CYP81AM1, specifically catalyses the C-15 hydroxylation of dehydroabietic acid. This is the first CYP450 to be found in plants with this function. Cytochrome P450 oxygenases (CYPs) play an important role in the post-modification in biosynthesis of plant bioactive terpenoids.

View Article and Find Full Text PDF

Celastrol, a potent anticancer and anti-obesity drug, was first isolated from Tripterygium wilfordii Hook. f. and it is produced in small quantities in many members of the Celastraceae family.

View Article and Find Full Text PDF

Acyclic terpenes, commonly found in plants, are of high physiological importance and commercial value, and their diversity was controlled by different terpene synthases. During the screen of sesquiterpene synthases from Tripterygium wilfordii, we observed that Ses-TwTPS1-1 and Ses-TwTPS2 promiscuously accepted GPP, FPP, and GGPP to produce corresponding terpene alcohols (linalool/nerolidol/geranyllinalool). The Ses-TwTPS1-2, Ses-TwTPS3, and Ses-TwTPS4 also showed unusual substrate promiscuity by catalyzing GGPP or GPP in addition to FPP as substrate.

View Article and Find Full Text PDF

, a perennial herb of the genus in the family Araliaceae, has played an important role in clinical treatment in China for thousands of years because of its extensive pharmacological effects. Here, we report a high-quality reference genome of , with a genome size up to 2.66 Gb and a contig N50 of 1.

View Article and Find Full Text PDF

Miltiradiene is a key intermediate in the biosynthesis of many important natural diterpene compounds with significant pharmacological activity, including triptolide, tanshinones, carnosic acid and carnosol. Sufficient accumulation of miltiradiene is vital for the production of these medicinal compounds. In this study, comprehensive engineering strategies were applied to construct a high-yielding miltiradiene producing yeast strain.

View Article and Find Full Text PDF
Article Synopsis
  • Triptolide, a natural product from the plant Tripterygium wilfordii, shows promise in treating pancreatic cancer and understanding its production is crucial for bioproduction efforts.
  • Researchers provided a reference-grade genome of T. wilfordii, revealing a recent whole-genome triplication event that affects the biosynthetic genes for triptolide.
  • By combining genomic, transcriptomic, and metabolomic data, they identified a specific gene (CYP728B70) involved in the biosynthesis of triptolide, establishing a foundation for future research on its production.
View Article and Find Full Text PDF

We cloned two squalene epoxidases and five oxidosqualene cyclases, and identified their function using CRISPR/Cas9 tool and yeast heterologous expression. Triterpenes are the main active ingredients of Tripterygium wilfordii Hook.f.

View Article and Find Full Text PDF

Background: Hook. f. () is an important medicinal plant with anti-inflammatory, immunosuppressive and anti-tumor activities.

View Article and Find Full Text PDF

Terpenoids are main bioactive components in Tripterygium wilfordii,but the contents of some terpenoids are relatively low. In order to provide scientific evidence for the regulation of terpenoids in T. wilfordii,this research explored the effect of GR24 on accumulations of four diterpenoids( triptolide,tripterifordin,triptophenolide,and triptinin B) in T.

View Article and Find Full Text PDF

Flavonoids are important secondary metabolites that exist in many medicinal plants. Flavonoid glycosyltransferases can transfer sugar moieties to their parent rings, producing various flavonoid glycosides with significant pharmacological activities. Here, we report the molecular cloning of the O-glycosyltransferase TwUGT2 from and its catalytic activity was explored by heterologous expression in .

View Article and Find Full Text PDF

Tripterygium wilfordii is known to contain various types of bioactive diterpenoids that exhibit many remarkable activities. Many studies have recently been targeted toward the elucidation of the diterpenoids biosynthetic pathways in attempts to obtain these compounds with a view to solving the dilemma of low yield in plants. However, the short-chain prenyltransferases (SC-PTSs) responsible for the formation of geranylgeranyl diphosphate (GGPP), a crucial precursor for synthesizing the skeleton structures of diterpenoids, have not been characterized in depth.

View Article and Find Full Text PDF

Celastrol is a promising bioactive compound isolated from Tripterygium wilfordii and has been shown to possess many encouraging preclinical applications. However, the celastrol biosynthetic pathway is poorly understood, especially the key oxidosqualene cyclase (OSC) enzyme responsible for cyclisation of the main scaffold. Here, we report on the isolation and characterisation of three OSCs from T.

View Article and Find Full Text PDF

We found two subunits FTase/GGTaseI-α and FTase-β formed a heterodimer to transfer a farnesyl group from FPP to protein N-dansyl-GCVLS, confirming they are responsible for protein farnesylation in planta. Tripterygium wilfordii is a medicinal plant with a broad spectrum of anti-inflammatory, immunosuppressive and anti-cancer activities. Recently, a number of studies have focused on investigating the biosynthetic pathways of its bioactive compounds, whereas little attention has been paid to the enzymes which play important roles in regulating diverse developmental processes of T.

View Article and Find Full Text PDF

produces not only -kaurene, which is an intermediate of gibberellin (GA) biosynthesis in flowering plants, but also 16α-hydroxy--kaurane, whose physiological role has not been characterized. The two compounds are biosynthesized from the universal diterpenoid precursor (,,)-geranylgeranyl diphosphate (GGPP) by diterpene synthases, which have been discovered and functionally characterized in . Here, we described the functional characterization of four cytochrome P450 reductases (TwCPR) and one -kaurene oxidase (TwKO).

View Article and Find Full Text PDF