Wildfires emit solid-state strongly absorptive brown carbon (solid S-BrC, commonly known as tar ball), critical to Earth's radiation budget and climate, but their highly variable light absorption properties are typically not accounted for in climate models. Here, we show that from a Pacific Northwest wildfire, over 90% of particles are solid S-BrC with a mean refractive index of 1.49 + 0.
View Article and Find Full Text PDFThe development of efficient Pd single-atom catalysts for CO oxidation, crucial for environmental protection and fundamental studies, has been hindered by their limited reactivity and thermal stability. Here, we report a thermally stable TiO-supported Pd single-atom catalyst that exhibits enhanced intrinsic CO oxidation activity by tunning the local coordination of Pd atoms via H treatment. Our comprehensive characterization reveals that H-treated Pd single atoms have reduced nearest Pd-O coordination and form short-distanced Pd-Ti coordination, effectively stabilizing Pd as isolated atoms even at high temperatures.
View Article and Find Full Text PDFInvestigating the structural evolution and phase transformation of iron oxides is crucial for gaining a deeper understanding of geological changes on diverse planets and preparing oxide materials suitable for industrial applications. In this study, in-situ heating techniques are employed in conjunction with transmission electron microscopy (TEM) observations and ex-situ characterization to thoroughly analyze the thermal solid-phase transformation of akaganéite 1D nanostructures with varying diameters. These findings offer compelling evidence for a size-dependent morphology evolution in akaganéite 1D nanostructures, which can be attributed to the transformation from akaganéite to maghemite (γ-FeO) and subsequent crystal growth.
View Article and Find Full Text PDFWhile conventional ion-soft landing uses the mass-to-charge (/) ratio to achieve molecular selection for deposition, here we demonstrate the use of Structures for Lossless Ion Manipulation (SLIM) for mobility-based ion selection and deposition. The dynamic rerouting capabilities of SLIM were leveraged to enable the rerouting of a selected range of mobilities to a different SLIM path (rather than MS) that terminated at a deposition surface. A selected mobility range from a phosphazene ion mixture was rerouted and deposited with a current pulse (∼150 pA) resembling its mobility peak.
View Article and Find Full Text PDFCurrent transition alumina catalysts require the presence of significant amounts of toxic, environmentally deleterious dopants for their stabilization. Herein, we report a simple and novel strategy to engineer transition aluminas to withstand aging temperatures up to 1200 °C without inducing the transformation to low-surface-area α-AlO and without requiring dopants. By judiciously optimizing the abundance of dominant facets and the interparticle distance, we can control the temperature of the phase transformation from θ-AlO to α-AlO and the specific surface sites on the latter.
View Article and Find Full Text PDFEnviron Sci Technol
November 2023
Tar balls are brown carbonaceous particles that are highly viscous, spherical, amorphous, and light absorbing. They are believed to form in biomass burning smoke plumes during transport in the troposphere. Tar balls are also believed to have a significant impact on the Earth's radiative balance, but due to poorly characterized optical properties, this impact is highly uncertain.
View Article and Find Full Text PDFFocused ion beam (FIB) is frequently used to prepare electron- and X-ray-beam-transparent thin sections of samples, called lamellae. Typically, lamellae are prepared from only a subregion of a sample. In this paper, we present a novel approach for FIB lamella preparation of microscopic samples, wherein the entire cross-section of the whole sample can be investigated.
View Article and Find Full Text PDFIron-based redox-active minerals are ubiquitous in soils, sediments, and aquatic systems. Their dissolution is of great importance for microbial impacts on carbon cycling and the biogeochemistry of the lithosphere and hydrosphere. Despite its widespread significance and extensive prior study, the atomic-to-nanoscale mechanisms of dissolution remain poorly understood, particularly the interplay between acidic and reductive processes.
View Article and Find Full Text PDFResearch interest in single-atom catalysts (SACs) has been continuously increasing. However, the lack of understanding of the dynamic behaviors of SACs during applications hinders catalyst development and mechanistic understanding. Herein, we report on the evolution of active sites over Pd/TiO-anatase SAC (Pd/TiO) in the reverse water-gas shift (rWGS) reaction.
View Article and Find Full Text PDFDirect ethanol fuel cells have been widely investigated as nontoxic and low-corrosive energy conversion devices with high energy and power densities. It is still challenging to develop high-activity and durable catalysts for a complete ethanol oxidation reaction on the anode and accelerated oxygen reduction reaction on the cathode. The materials' physics and chemistry at the catalytic interface play a vital role in determining the overall performance of the catalysts.
View Article and Find Full Text PDFAtom trapping leads to catalysts with atomically dispersed RuO sites on (100) facets of ceria, as identified by spectroscopy and DFT calculations. This is a new class of ceria-based materials with Ru properties drastically different from the known M/ceria materials. They show excellent activity in catalytic NO oxidation, a critical step that requires use of large loadings of expensive noble metals in diesel aftertreatment systems.
View Article and Find Full Text PDFThis study investigates the sequestration and transformation of silver (Ag) and arsenic (As) ions in soil organic matter (OM) at the nanoscale using the combination of atom probe tomography (APT), transmission electron microscopy (TEM), focused ion beam (FIB), ion mill thinning and scanning electron microscopy (SEM). Silver-arsenic contaminated organic-rich soils were collected along the shore of Cobalt Lake, a former mining and milling site of the famous Ag deposits at Cobalt, Ontario, Canada. SEM examinations show that particulate organic matter (OM grains) contains mineral inclusions composed of mainly Fe, S, and Si with minor As and traces of Ag.
View Article and Find Full Text PDFSudden blockage of arteries supplying the heart muscle contributes to millions of heart attacks (myocardial infarction, MI) around the world. Although re-opening these arteries (reperfusion) saves MI patients from immediate death, approximately 50% of these patients go on to develop chronic heart failure (CHF) and die within a 5-year period; however, why some patients accelerate towards CHF while others do not remains unclear. Here we show, using large animal models of reperfused MI, that intramyocardial hemorrhage - the most damaging form of reperfusion injury (evident in nearly 40% of reperfused ST-elevation MI patients) - drives delayed infarct healing and is centrally responsible for continuous fatty degeneration of the infarcted myocardium contributing to adverse remodeling of the heart.
View Article and Find Full Text PDFIn computed TEM tomography, image segmentation represents one of the most basic tasks with implications not only for 3D volume visualization, but more importantly for quantitative 3D analysis. In case of large and complex 3D data sets, segmentation can be an extremely difficult and laborious task, and thus has been one of the biggest hurdles for comprehensive 3D analysis. Heterogeneous catalysts have complex surface and bulk structures, and often sparse distribution of catalytic particles with relatively poor intrinsic contrast, which possess a unique challenge for image segmentation, including the current state-of-the-art deep learning methods.
View Article and Find Full Text PDFThe large surface areas in porous organic matter (OM) and on the surface of altered minerals control the sequestration of metal(loid)s in contaminated soils and sediments. This study explores the sequestration of Cu by OM in surficial forest soil in close proximity to the Horne smelter, Rouyn-Noranda, Quebec, Canada. The organic-rich soils have elevated concentrations of Cu (Cu = 〈0.
View Article and Find Full Text PDFWe present a new analytical platform that uses a tilted stage (60°) integrated to the Peltier cooling stage interfaced with an Environmental Scanning Electron Microscope (ESEM) to directly observe and assess the phase state of particles as a function of RH at a controlled temperature. Three types of organic particles have been studied: (a) Suwannee River Fulvic Acid (SRFA) particles, (b) lab generated soil organic particles, and (c) field-collected ambient particles. The chemical composition, morphology, and functional groups of individual particles were probed using computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy (CCSEM/EDX) and scanning transmission X-ray microscopy with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS).
View Article and Find Full Text PDFSteamed zeolites exhibit improved catalytic properties for hydrocarbon activation (alkane cracking and dehydrogenation). The nature of this practically important phenomenon has remained a mystery for the last six decades and was suggested to be related to the increased strength of zeolitic Bronsted acid sites after dealumination. We now utilize state-of-the-art infrared spectroscopy measurements and prove that during steaming, aluminum oxide clusters evolve (due to hydrolysis of Al out of framework positions with the following clustering) in the zeolitic micropores with properties very similar to (nano) facets of hydroxylated transition alumina surfaces.
View Article and Find Full Text PDFNutrient foraging by fungi weathers rocks by mechanical and biochemical processes. Distinguishing fungal-driven transformation from abiotic mechanisms in soil remains a challenge due to complexities within natural field environments. We examined the role of fungal hyphae in the incipient weathering of granulated basalt from a three-year field experiment in a mixed hardwood-pine forest (S.
View Article and Find Full Text PDFBiodegradable plastics can reach full degradation when disposed of appropriately and thus alleviate plastic pollution caused by conventional plastics. However, additives can be released into the environment during degradation and the fate of these additives can be affected by the degradation process. Here, we characterized TiO particles released from a biodegradable plastic mulch during composting and studied the transport of the mulch-released TiO particles in inert sand and agricultural soil columns under unsaturated flow conditions.
View Article and Find Full Text PDFCerium is a critical element to modern technologies. Nowadays, its increased applications have led to elevated levels in the environment. Cerium recovery by microorganisms has gained a great deal of attention.
View Article and Find Full Text PDFCO oxidation is of importance both for inorganic and living systems. Transition and precious metals supported on various materials can oxidize CO to CO. Among them, few systems, such as Au/TiO, can perform CO oxidation at temperatures as low as -70 °C.
View Article and Find Full Text PDFPd-loaded FER and SSZ-13 zeolites as low-temperature passive NOx adsorbers (PNA) are compared under practical conditions. Vehicle cold start exposes the material to CO under a range of concentrations, necessitating a systematic exploration of the effect of CO on the performance of isolated Pd ions in PNA. The NO release temperature of both adsorbers decreases gradually with an increase in CO concentration from a few hundred to a few thousand ppm.
View Article and Find Full Text PDFIndustrial low-temperature methane combustion catalyst Pd/AlO suffers from HO-induced deactivation. It is imperative to design Pd catalysts free from this deactivation and with high atomic efficiency. Using a small-pore zeolite SSZ-13 as support, herein we report well-defined Pd catalysts with dominant active species as finely dispersed Pd cations, uniform PdO particles embedded inside the zeolite framework, or PdO particles decorating the zeolite external surface.
View Article and Find Full Text PDFIron-carbide-based catalysts have been explored in the selective hydrodeoxygenation (HDO) of phenol, aiming at elucidating the role of active site and alkali metal. Complementary characterization such as X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and scanning transmission electron microscopy coupled with electron energy loss spectroscopy, together with catalytic evaluations revealed a rapid structural reconstruction of iron carbide (Fe C) catalysts, leading to a stable defective graphene-covered metallic Fe active phase (G@Fe) under reaction conditions. Further studies using different alkali metals (i.
View Article and Find Full Text PDF