Intervalley excitons with electron and hole wavefunctions residing in different valleys determine the long-range transport and dynamics observed in many semiconductors. However, these excitons with vanishing oscillator strength do not directly couple to light and, hence, remain largely unstudied. Here, we develop a simple nanomechanical technique to control the energy hierarchy of valleys via their contrasting response to mechanical strain.
View Article and Find Full Text PDFWe report on the energy dependence of the photoemission time delay from the single-element layered dielectric HOPG (highly oriented pyrolytic graphite). This system offers the unique opportunity to directly observe the Eisenbud-Wigner-Smith (EWS) time delays related to the bulk electronic band structure without being strongly perturbed by ubiquitous effects of transport, screening, and multiple scattering. We find the experimental streaking time shifts to be sensitive to the modulation of the density of states in the high-energy region ( ≈ 100 eV) of the band structure.
View Article and Find Full Text PDFIn twisted van der Waals (vdW) bilayers, intrinsic strain associated with the moiré superlattice and unintentionally introduced uniaxial strain may be present simultaneously. Both strains are able to lift the degeneracy of the E phonon modes in Raman spectra. Because of the different rotation symmetry of the two types of strain, the corresponding Raman intensity exhibits a distinct polarization dependence.
View Article and Find Full Text PDFTransient absorption spectroscopy is a powerful tool to monitor the out-of-equilibrium optical response of photoexcited semiconductors. When this method is applied to two-dimensional semiconductors deposited on different substrates, the excited state optical properties are inferred from the pump-induced changes in the transmission/reflection of the probe, i.e.
View Article and Find Full Text PDFMechanical strain is a powerful tuning knob for excitons, Coulomb-bound electron-hole complexes dominating optical properties of two-dimensional semiconductors. While the strain response of bright free excitons is broadly understood, the behaviour of dark free excitons (long-lived excitations that generally do not couple to light due to spin and momentum conservation) or localized excitons related to defects remains mostly unexplored. Here, we study the strain behaviour of these fragile many-body states on pristine suspended WSe kept at cryogenic temperatures.
View Article and Find Full Text PDFUnderstanding the water splitting mechanism in photocatalysis is a rewarding goal as it will allow producing clean fuel for a sustainable life in the future. However, identifying the photocatalytic mechanisms by modeling photoactive nanoparticles requires sophisticated computational techniques based on multiscale modeling. In this review, we will survey the strengths and drawbacks of currently available theoretical methods at different length and accuracy scales.
View Article and Find Full Text PDFLight-field driven charge motion links semiconductor technology to electric fields with attosecond temporal control. Motivated by ultimate-speed electron-based signal processing, strong-field excitation has been identified viable for the ultrafast manipulation of a solid's electronic properties but found to evoke perplexing post-excitation dynamics. Here, we report on single-photon-populating the conduction band of a wide-gap dielectric within approximately one femtosecond.
View Article and Find Full Text PDFIn moiré crystals formed by stacking van der Waals materials, surprisingly diverse correlated electronic phases and optical properties can be realized by a subtle change in the twist angle. Here, we discover that phonon spectra are also renormalized in MoS twisted bilayers, adding an insight to moiré physics. Over a range of small twist angles, the phonon spectra evolve rapidly owing to ultra-strong coupling between different phonon modes and atomic reconstructions of the moiré pattern.
View Article and Find Full Text PDFWe present an embedding approach to treat local electron correlation effects in periodic environments. In a single consistent framework, our plane wave based scheme embeds a local high-level correlation calculation [here, Coupled Cluster (CC) theory], employing localized orbitals, into a low-level correlation calculation [here, the direct Random Phase Approximation (RPA)]. This choice allows for an accurate and efficient treatment of long-range dispersion effects.
View Article and Find Full Text PDFWe calculate the time evolution of the transient reflection signal in an MoS monolayer on a SiO/Si substrate using first-principles out-of-equilibrium real-time methods. Our simulations provide a simple and intuitive physical picture for the delayed, yet ultrafast, evolution of the signal whose rise time depends on the excess energy of the pump laser: at laser energies above the A- and B-exciton, the pump pulse excites electrons and holes far away from the K valleys in the first Brillouin zone. Electron-phonon and hole-phonon scattering lead to a gradual relaxation of the carriers toward small around K, enhancing the dielectric screening.
View Article and Find Full Text PDFTwo-particle spectroscopy with correlated electron pairs is used to establish the causal link between the secondary electron spectrum, the (π+σ) plasmon peak, and the unoccupied band structure of highly oriented pyrolytic graphite. The plasmon spectrum is resolved with respect to the involved interband transitions and clearly exhibits final state effects, in particular due to the energy gap between the interlayer resonances along the ΓA direction. The corresponding final state effects can also be identified in the secondary electron spectrum.
View Article and Find Full Text PDFElectron and hole Bloch states in bilayer graphene exhibit topological orbital magnetic moments with opposite signs, which allows for tunable valley-polarization in an out-of-plane magnetic field. This property makes electron and hole quantum dots (QDs) in bilayer graphene interesting for valley and spin-valley qubits. Here, we show measurements of the electron-hole crossover in a bilayer graphene QD, demonstrating opposite signs of the magnetic moments associated with the Berry curvature.
View Article and Find Full Text PDFThe growing family of 2D materials led not long ago to combining different 2D layers and building artificial systems in the form of van der Waals heterostructures. Tailoring of heterostructure properties postgrowth would greatly benefit from a modification technique with a monolayer precision. However, appropriate techniques for material modification with this precision are still missing.
View Article and Find Full Text PDFBand nesting occurs when conduction and valence bands are approximately equispaced over regions in the Brillouin zone. In two-dimensional materials, band nesting results in singularities of the joint density of states and thus in a strongly enhanced optical response at resonant frequencies. We exploit the high sensitivity of such resonances to small changes in the band structure to sensitively probe strain in semiconducting transition metal dichalcogenides (TMDs).
View Article and Find Full Text PDFWe report on measurements of quantized conductance in gate-defined quantum point contacts in bilayer graphene that allow the observation of subband splittings due to spin-orbit coupling. The size of this splitting can be tuned from 40 to 80 μeV by the displacement field. We assign this gate-tunable subband splitting to a gap induced by spin-orbit coupling of Kane-Mele type, enhanced by proximity effects due to the substrate.
View Article and Find Full Text PDFSingle-photon emitters play a key role in present and emerging quantum technologies. Several recent measurements have established monolayer WSe_{2} as a promising candidate for a reliable single-photon source. The origin and underlying microscopic processes have remained, however, largely elusive.
View Article and Find Full Text PDFOwing to its low excitation energy and long radiative lifetime, the first excited isomeric state of thorium-229, Th, can be optically controlled by a laser and is an ideal candidate for the creation of a nuclear optical clock, which is expected to complement and outperform current electronic-shell-based atomic clocks. A nuclear clock will have various applications-such as in relativistic geodesy, dark matter research and the observation of potential temporal variations of fundamental constants-but its development has so far been impeded by the imprecise knowledge of the energy of Th. Here we report a direct measurement of the transition energy of this isomeric state to the ground state with an uncertainty of 0.
View Article and Find Full Text PDFWe present measurements of quantized conductance in electrostatically induced quantum point contacts in bilayer graphene. The application of a perpendicular magnetic field leads to an intricate pattern of lifted and restored degeneracies with increasing field: at zero magnetic field the degeneracy of quantized one-dimensional subbands is four, because of a twofold spin and a twofold valley degeneracy. By switching on the magnetic field, the valley degeneracy is lifted.
View Article and Find Full Text PDFPhotoemission spectroscopy is central to understanding the inner workings of condensed matter, from simple metals and semiconductors to complex materials such as Mott insulators and superconductors. Most state-of-the-art knowledge about such solids stems from spectroscopic investigations, and use of subfemtosecond light pulses can provide a time-domain perspective. For example, attosecond (10 seconds) metrology allows electron wave packet creation, transport and scattering to be followed on atomic length scales and on attosecond timescales.
View Article and Find Full Text PDFDissociative chemisorption of O on the Al(111) surface represents an extensively studied prototype for understanding the interaction between O and metal surfaces. It is well known that the experimentally observed activation barrier for O dissociation is not captured by conventional density functional theory. The interpretation of this barrier as a result of spin transitions along the reaction path has been challenged by recent embedded correlated wave function (ECW) calculations that naturally yield an adiabatic barrier.
View Article and Find Full Text PDFWe present magneto-Raman spectroscopy measurements on suspended graphene to investigate the charge carrier density-dependent electron-electron interaction in the presence of Landau levels. Utilizing gate-tunable magnetophonon resonances, we extract the charge carrier density dependence of the Landau level transition energies and the associated effective Fermi velocity v_{F}. In contrast to the logarithmic divergence of v_{F} at zero magnetic field, we find a piecewise linear scaling of v_{F} as a function of the charge carrier density, due to a magnetic-field-induced suppression of the long-range Coulomb interaction.
View Article and Find Full Text PDFCoherent manipulation of the binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid-state systems, whereas exploitation of the valley has only recently been started, albeit without control at the single-electron level.
View Article and Find Full Text PDFIn this article, we present coherent control of above-threshold photoemission from a tungsten nanotip achieving nearly perfect modulation. Depending on the pulse delay between fundamental ([Formula: see text]) and second harmonic ([Formula: see text]) pulses of a femtosecond fiber laser at the nanotip, electron emission is significantly enhanced or depressed during temporal overlap. Electron emission is studied as a function of pulse delay, optical near-field intensities, DC bias field and final photoelectron energy.
View Article and Find Full Text PDF