N-acetyltransferase 10 (NAT10), an enzyme responsible for ac4C acetylation, is implicated in cancer progression, though its specific biological function in prostate cancer remains insufficiently understood. This study clarifies NAT10's role in prostate cancer and its effects on the tumor immune microenvironment. NAT10 expression and clinical relevance were assessed through bioinformatics, RT-qPCR, and IHC analyses, comparing prostate cancer tissues with normal controls.
View Article and Find Full Text PDFThe increasing incidence and mortality of prostate cancer worldwide significantly impact the life span of male patients, emphasizing the urgency of understanding its pathogenic mechanism and associated molecular changes that regulate tumor progression for effective prevention and treatment. RNA modification, an important post-transcriptional regulatory process, profoundly influences tumor cell growth and metabolism, shaping cell fate. Over 170 RNA modification methods are known, with prominent research focusing on N6-methyladenosine, N7-methylguanosine, N1-methyladenosine, 5-methylcytidine, pseudouridine, and N4-acetylcytidine modifications.
View Article and Find Full Text PDFTumor-derived exosomes and their contents promote cancer metastasis. Phosphoglycerate mutase 1 (PGAM1) is involved in various cancer-related processes. Nevertheless, the underlying mechanism of exosomal PGAM1 in prostate cancer (PCa) metastasis remains unclear.
View Article and Find Full Text PDFThe fat mass and obesity-associated protein (FTO) is an N6-Methyladenosine (m6A) demethylase, which has been revealed to play critical roles in tumorigenesis. However, its role in the development and progression of prostate cancer (PCa) remains poorly understood. Here, we aimed to investigate the function and clinical relevance of FTO in PCa.
View Article and Find Full Text PDFOwing to incurable castration-resistant prostate cancer (CRPC) ultimately developing after treating with androgen deprivation therapy (ADT), it is vital to devise new therapeutic strategies to treat CRPC. Treatments that target programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for human cancers with clinical benefit. However, many patients, especially prostate cancer, fail to respond to anti-PD-1/PD-L1 treatment, so it is an urgent need to seek a support strategy for improving the traditional PD-1/PD-L1 targeting immunotherapy.
View Article and Find Full Text PDFZhonghua Nan Ke Xue
September 2021
Objective: To investigate the expression of phosphoglycerate mutase 1 (PGAM1) in the mouse testis after exposure to single heat stress (SHS).
Methods: We randomly assigned 32 C57 male mice to an SHS (n = 16) and a control group (n = 16), the former bathed in water at 43 ℃ and the latter at 25 ℃ for 15 minutes. At 1 and 7 days after exposure, we harvested the testicular tissue for observation of the morphological changes of testicular cells by HE staining and determination of the location and expression of the PGAM1 protein by immunohistochemistry and Western blot.
The interaction between LncRNA and RNA-binding protein (RBPs) plays an essential role in the regulation over the malignant progression of tumors. Previous studies on the mechanism of SNHG1, an emerging lncRNA, have primarily focused on the competing endogenous RNA (ceRNA) mechanism. Nevertheless, the underlying mechanism between SNHG1 and RBPs in tumors remains to be explored, especially in prostate cancer (PCa).
View Article and Find Full Text PDFBackground: CircRNAs recently have shown critical roles in tumor biology. However, their roles in prostate cancer (PCa) remains largely unclear.
Methods: CircRNA microarrays were performed in immortal prostate cell line RWPE1 and PCa cell lines as DU145, PC3, LNCaP, C4-2, and 22RV1.
On account of incurable castration-resistant prostate cancer (CRPC) inevitably developing after treating with androgen deprivation therapy, it is an urgent need to find new therapeutic strategies. Flubendazole is a well-known anti-malarial drug that is recently reported to be a potential anti-tumor agent in various types of human cancer cells. However, whether flubendazole could inhibit the castration-resistant prostate cancer has not been well charified.
View Article and Find Full Text PDF