Publications by authors named "Libin Fu"

Locally chiral light is an emerging tool for probing and controlling molecular chirality. It can generate large and freely adjustable enantioselectivities in purely electric-dipole effects, offering its major advantages over traditional chiral light. However, the existing types of locally chiral light are phase-mismatched, and thus the global efficiencies are greatly reduced compared with the maximum single-point efficiencies or even vanish.

View Article and Find Full Text PDF

The Ginzburg-Landau theory, which was introduced to phenomenologically describe the destruction of superconductivity by a magnetic field at the beginning, has brought up much more knowledge beyond the original one as a mean-field theory of thermodynamics states. There the complex order parameter plays an important role. Here we propose a macroscopic theory to describe the features of ferroelectrics by a two-component complex order parameter coupled to nonabelian gauge potentials that provide more freedom to reflect interplays between different measurables.

View Article and Find Full Text PDF

The interplay of interactions, symmetries, and gauge fields usually leads to intriguing quantum many-body phases. To explore the nature of emerging phases, we study a quantum Rabi triangle system as an elementary building block for synthesizing an artificial magnetic field. We develop an analytical approach to study the rich phase diagram and the associated quantum criticality.

View Article and Find Full Text PDF

We theoretically investigate the spectral caustics of high-order harmonics in solids. We analyze the one-dimensional model of high-order harmonic generation (HHG) in solids and find that apart from the caustics originating from the van Hove singularities in the energy band structure, another kind of catastrophe enhancement also emerges in solids when the different branches of electron-hole trajectories generating high-order harmonics coalesce into a single branch. We solve the time-dependent Schrödinger equation in terms of the periodic potential and demonstrate the control of this kind of singularity in HHG with the aid of two-color laser fields.

View Article and Find Full Text PDF

Nonradical persulfate oxidation processes have emerged as a new wastewater treatment method due to production of mild nonradical oxidants, selective oxidation of organic pollutants, and higher tolerance to water matrixes compared with radical persulfate oxidation processes. Since the case of the nonradical activation of peroxydisulfate (PDS) was reported on CuO surface in 2014, nonradical persulfate oxidation processes have been extensively investigated, and much achievement has been made on realization of nonradical persulfate activation processes and understanding of intrinsic reaction mechanism. Therefore, in the review, nonradical pathways and reaction mechanisms for oxidation of various organic pollutants by PDS and peroxymonosulfate (PMS) are overviewed.

View Article and Find Full Text PDF

The application of MoS to enhance Co(II)/peroxymonosulfate (Co(II)/PMS) system for organic pollutants degradation was developed, and the mechanism for pH dependent catalytic activity in the MoS co-catalyzed Co(II)/PMS processes was systematically investigated. It was found that MoS presented enhancement effect for Co(II)/PMS system in the tested pH range from 4.0 to 7.

View Article and Find Full Text PDF

The intensity-dependent resonancelike enhancement phenomenon in the high-order above-threshold ionization spectrum is a typical quantum effect for atoms or molecules in an intense laser field, which has not been well understood. The calculations of the time-dependent Schrödinger equation (TDSE) are in remarkable agreement with the experimental data, but they cannot clarify the contributions of the bound states. The semiclassical approach of strong field approximation, in which no excited states are involved, can obtain a similar phenomenon, but the laser intensities of enhanced regions predicted by the strong field approximation are inconsistent with the results of the TDSE.

View Article and Find Full Text PDF

We consider a harmonic charging field as an energy charger for the quantum battery, which consists of an ensemble of two-level atoms. The charging of noninteracting atoms is completely fulfilled, which exhibits a substantial improvement over previous static charging fields. Involving the repulsive interactions of atoms, the fully charging is achieved with shorter charged period over the noninteracting case, yielding an advantage for the charging.

View Article and Find Full Text PDF

Ultrafast imaging and manipulating transient molecular structures in chemical reactions and photobiological processes is a fundamental but challenging goal for scientists. Theoretically, the challenge originates from the complex multiple-time-scale correlated electron dynamics and their coupling with the nuclei. Here, we employ classical polyatomic models for this kind of study and take the Coulomb explosion of argon and neon trimers in strong laser fields as an illuminating example.

View Article and Find Full Text PDF

Atomic excitation to excited states in a strong laser field is the key to high-order harmonic generation below the ionization threshold, yet it remains unclear mainly due to the lack of proper detection methods. We propose a frequency-resolved photon-electron spectroscopy technique to reconstruct a population of excited states with the second delayed laser pulse. The technique utilizes Fourier transformation to separate ionization from different excited states to different positions on the spectrum.

View Article and Find Full Text PDF

Majorana stars are visual representation for a quantum pure state. For some states, the corresponding majorana stars are located on one curve on the Block sphere. However, it is lack of exact curve equations for them.

View Article and Find Full Text PDF

We investigate the nonlinear Ramsey interferometry of a bosonic Josephson junction coupled to an optical cavity by applying two identical pumping field pulses separated by a holding field in the time domain. When the holding field is absent, we show that the atomic Ramsey fringes are sensitive to both the cavity-pump detuning and the initial state, and their periods can encode the information on both the atom-field coupling and the atom-atom interaction. For a weak holding field, we find that the fringes characterized by the oscillation of the intra-cavity photon number can completely reflect the frequency information of the atomic interference due to the weak atom-cavity coupling.

View Article and Find Full Text PDF

We numerically investigate the effects of the external focusing and the pulse parameters on the propagation of the ring Gaussian filaments in air. The simulation results indicate that the onset distance of filament, the length and uniformity of the plasma strings, and the energy deposition strongly depend on these optical parameters. The length of optical filament can be extended greatly by adjusting the lens parameters near the maximum energy deposition.

View Article and Find Full Text PDF

In the presence of very deep well potential, electrons will spontaneously occupy the empty embedded bound states and electron-positron pairs are created by means of a non-perturbative tunneling process. In this work, by slowly oscillating the width or depth, the population transfer channels are opened and closed periodically. We find and clearly show that by the non-synchronous ejections of particles, the saturation of pair number in a static super-critical well can be broken, and electrons and positrons can be pumped inexhaustibly from vacuum with a constant production rate.

View Article and Find Full Text PDF

The sum-energy spectrum of two correlated electrons emitted in nonsequential strong-field double ionization (SFDI) of Ar was studied for intensities of 0.3 to 2×10^{14} W/cm^{2}. We find the mean sum energy, the maximum of the distributions as well as the high-energy tail of the scaled (to the ponderomotive energy) spectra increase with decreasing intensity below the recollision threshold (BRT).

View Article and Find Full Text PDF

We perform a fully differential measurement on strong-field double ionization of Xe by 25 fs, 790 nm laser pulses in intensity region (0.4-3)×10(14) W/cm2. We observe that the two-dimensional correlation momentum spectra along the laser polarization direction show a nonstructured distribution for double ionization of Xe when decreasing the laser intensity from 3×10(14) to 4×10(13)  W/cm2.

View Article and Find Full Text PDF
Nonlinearity effects on the directed momentum current.

Phys Rev E Stat Nonlin Soft Matter Phys

August 2014

We investigate the quantum transport dynamics governed by the nonlinear Schrödinger equation with a periodically-δ-kicking potential and discover the emergence of a directed current in momentum space. With the increase of nonlinearity, we find strikingly that the momentum current decreases, reverses, and finally vanishes, indicating that the quantum transport can be effectively manipulated through adjusting the nonlinearity. The underlying dynamic mechanism is uncovered and some important implications are addressed.

View Article and Find Full Text PDF

We perform a triple coincidence study on differential momentum distributions of strong-field double ionization of Ar atoms in linearly polarized fields (795 nm, 45 fs, 7×10(13)  W/cm2). Using a three-dimensional two-electron atomic-ensemble semiclassical model including the tunneling effect for both electrons, we retrieve differential momentum distributions and achieve a good agreement with the measurement. Ionization dynamics of the correlated electrons for the side-by-side and back-to-back emission is analyzed separately.

View Article and Find Full Text PDF

Measure synchronization (MS) in a two-species bosonic Josephson junction (BJJ) is studied based on semiclassical theory. Six different scenarios for MS, including two in the Josephson oscillation regime (the zero-phase mode) and four in the self-trapping regime (the π-phase mode), are clearly shown. Systematic investigations of the common features behind these different scenarios are performed.

View Article and Find Full Text PDF

We measure photoelectron angular distributions of noble gases in intense elliptically polarized laser fields, which indicate strong structure-dependent Coulomb asymmetry. Using a dedicated semiclassical model, we have disentangled the contribution of direct ionization and multiple forward scattering on Coulomb asymmetry in elliptical laser fields. Our theory quantifies the roles of the ionic potential and initial transverse momentum on Coulomb asymmetry, proving that the small lobes of asymmetry are induced by direct ionization and the strong asymmetry is induced by multiple forward scattering in the ionic potential.

View Article and Find Full Text PDF

We measure photoelectron angular distributions of single ionization of krypton and xenon atoms by laser pulses at 1320 nm, 0.2-1.0×10(14) W/cm(2), and observe that the yield of near-zero-momentum electrons in the strong-field tunneling ionization regime is significantly suppressed.

View Article and Find Full Text PDF

Using an all-fiber laser system consisting of a femtosecond Er/Yb fiber oscillator as the pump and an ultra-highly nonlinear fiber for Stokes generation, we demonstrate multimodal (TPF+SHG+CARS) non-linear optical microscopy of both tissue samples and live cells. Multimodal imaging was successfully performed with pixel dwell times as short as 4 micros at low laser powers (< 40 mW total).

View Article and Find Full Text PDF

We report a strictly single-mode optical fiber with a record core diameter of 84 microm and an effective mode area of approximately 3600 microm(2) at 1 microm. We also demonstrate fundamental mode operation in an optical fiber with a record core diameter of 252 microm and a measured mode field diameter (MFD) of 149 microm at 1.03 microm, i.

View Article and Find Full Text PDF

Phosphorus co-doping is known to reduce clustering levels of rare earth ions in silica hosts. In this paper, ytterbium-doped silica fibers with approximately 8.9 wt% Yb(2)O(3), up to approximately 4700 dB/m peak core absorption at 976 nm, and low photo-darkening are demonstrated using high phosphorus co-doping.

View Article and Find Full Text PDF

All glass leakage channel fibers have been demonstrated to be a potential practical solution for power scaling in fiber lasers beyond the nonlinear limits in conventional large mode area fibers. The all glass nature with absence of any air holes is especially useful for allowing the fibers to be used and fabricated much like conventional fibers. Previously, double clad active all glass leakage channel fibers used low index polymer as a pump guide with the drawbacks of being less reliable at high pump powers and not being able to change fiber outer diameter independent of pump guide dimension.

View Article and Find Full Text PDF