Publications by authors named "Libiao Wu"

Background: Rice is an important staple food that is consumed around the world. Like many foods, the price of rice varies considerably, from very inexpensive for a low-quality product to premium pricing for highly prized varieties from specific locations. Therefore, like other foods it is vulnerable to economically motivated adulteration through substitution or misrepresentation of inferior-quality rice for more expensive varieties.

View Article and Find Full Text PDF

As an indispensable, even lifesaving practice, red blood cell (RBC) transfusion is challenging due to several issues, including supply shortage, immune incompatibility, and blood-borne infections since donated blood is the only source of RBCs. Although large-scale in vitro production of functional RBCs from human stem cells is a promising alternative, so far, no such system has been reported to produce clinically transfusable RBCs due to the poor understanding of mechanisms of human erythropoiesis, which is essential for the optimization of in vitro erythrocyte generation system. We previously reported that inhibition of mammalian target of rapamycin (mTOR) signaling significantly decreased the percentage of erythroid progenitor cells in the bone marrow of wild-type mice.

View Article and Find Full Text PDF

A variety of mycotoxins from different sources frequently contaminate farm products, presenting a potential toxicological concern for animals and human. Mycotoxin exposure has been the focus of attention for governments around the world. To date, biomarkers are used to monitor mycotoxin exposure and promote new understanding of their role in chronic diseases.

View Article and Find Full Text PDF

The expansion of CD4+ CD25+ forkhead box (FOX)P3+ regulatory T (Treg) cells has been observed in patients with Mycobacterium (M.) tuberculosis; however, the mechanism of expansion remains to be elucidated. The aim of the present study was to examine the role of the early secreted antigenic target 6(ESAT‑6) and antigen 85 complex B (Ag85B) from M.

View Article and Find Full Text PDF

Previous studies have shown that epigallocatechin-3-gallate (EGCG) inhibits the proliferation of vascular smooth muscle cells (VSMCs) via the extracellular-signal-regulated kinase (ERK1/2) and mitogen activated protein kinases (MAPKs) pathway. Mitofusin 2 (Mfn-2) also suppresses VSMC proliferation through Ras-Raf-ERK/MAPK, suggesting a possible link between EGCG, Mfn-2 and ERK/MAPK. However, the effect of EGCG on Mfn-2 remains unknown.

View Article and Find Full Text PDF

Background: Urotensin II (UII) is a new vasoconstrictive peptide that may activate the adventitial fibroblasts. Transforming growth factor-β1 (TGF-β1) is an important factor that could induce the phenotypical transdifferentiation of adventitial fibroblasts. This study aimed to explore whether TGF-β1 is involved in UII-induced phenotypic differentiation of adventitial fibroblasts from rat aorta.

View Article and Find Full Text PDF

Urotensin II (UII) is a potent vasoactive cyclic peptide which has multiple effects on the cardiovascular system. However, the effects of UII on late endothelial progenitor cells (EPCs) are still unclear. The aim of the present study is to investigate whether UII influences the functional activity of late EPCs.

View Article and Find Full Text PDF

Recent studies suggest that both osteopontin and urotensin II (UII) play critical roles in vascular remodeling. We previously showed that UII could stimulate the migration of aortic adventitial fibroblasts. In this study, we examined whether osteopontin is involved in UII-induced migration of rat aortic adventitial fibroblasts and examined the effects and mechanisms of UII on osteopontin expression in adventitial fibroblasts.

View Article and Find Full Text PDF

The aim of this study is to investigate whether nicotinic acetylcholine receptors (nAChRs) are involved in the modulation of functional activity of late endothelial progenitor cells (EPCs) induced by nicotine. Total mononuclear cells (MNCs) were isolated from human umbilical cord blood by Ficoll density gradient centrifugation, and then the cells were plated on fibronectin-coated culture plates. Late EPCs were positive for 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine-labeled acetylated low-density lipoprotein (DiI-acLDL) uptake and fluorescein-isothiocyanate-conjugated Ulex europaeus agglutinin lectin (UEA-1) binding.

View Article and Find Full Text PDF

The aim of this study is to investigate the effect of osteopontin (OPN) on functional activity of late endothelial progenitor cells (EPCs). Total mononuclear cells (MNCs) were isolated from human umbilical cord blood by Ficoll density gradient centrifugation, and then the cells were plated on fibronectin-coated culture plates. Late EPCs were positive for both 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine-labeled acetylated low-density lipoprotein (DiI-acLDL) and fluorescein-isothiocyanate-conjugated Ulex europaeus agglutinin lectin (UEA-1).

View Article and Find Full Text PDF

Aim: To develop a fusion vaccine of esophageal carcinoma cells and dendritic cells (DC) and observe its protective and therapeutic effect against esophageal carcinoma cell line 109 (EC109).

Methods: The fusion vaccine was produced by fusing traditional polyethyleneglycol (PEG), inducing cytokine, sorting CD34+ magnetic microbead marker and magnetic cell system (MACS). The liver, spleen and lung were pathologically tested after injection of the fusion vaccine.

View Article and Find Full Text PDF

The aim of this experiment was to develop a cytotoxic cancer vaccine (EC109-DC) prepared by fusions of esophageal carcinoma cells with dendritic cells derived from cord blood and to study the biological characteristics and resultant induction of antitumor immunity. CD34+ hematopoietic stem cells were isolated from cord blood using a CD34+ Progenitor Cell Isolation Kit by magnetic cell sorting system (MACS). CD34+ cells were incubated with rhGM-CSF, rhTNF-alpha and rhSCF for 2 weeks as DC (dendritic cells), and then by PEG-3600 to fuse with an esophageal carcinoma cell line.

View Article and Find Full Text PDF