The development of a fatal, clonal, autonomously proliferating CD4-CD8- chimeric antigen receptor (CAR)+ peripheral T-cell lymphoma (PTCL) occurred 1 month after a patient received treatment with tisagenlecleucel for relapsed primary central nervous system lymphoma. The PTCL had a clonal T-cell receptor rearrangement, which was already detectable in the apheresis product for CAR T-cell manufacturing and 7 months earlier for autologous transplantation. Somatic and mutations in CD34+ stem cells and their progeny were detected in the PTCL, in the apheresis specimen that was obtained for CAR T-cell production, and in the autotransplant.
View Article and Find Full Text PDFAt the 8th International Workshop on Genotoxicity Testing meeting in Ottawa, in August 2022, a plenary session was dedicated to the genotoxicity risk evaluation of gene therapies, including insertional oncogenesis and off-target genome editing. This brief communication summarizes the topics of discussion and the main insights from the speakers. Common themes included recommendations to conduct tailored risk assessments based on a weight-of-evidence approach, to promote data sharing, transparency, and cooperation between stakeholders, and to develop state-of-the-art validated tests relevant to clinical scenarios.
View Article and Find Full Text PDFSpinal muscular atrophy is an autosomal recessive disease resulting in motor neuron degeneration and progressive life-limiting motor deficits when untreated. Onasemnogene abeparvovec is an adeno-associated virus serotype 9-based gene therapy that improves survival, motor function, and motor milestone achievement in symptomatic and presymptomatic patients. Although the adeno-associated virus genome is maintained as an episome, theoretical risk of tumorigenicity persists should genomic insertion occur.
View Article and Find Full Text PDFBackground: Engineered tissues and cell therapies based on human induced pluripotent stem cells (iPSCs) represent a promising approach for novel medicines. However, iPSC-derived cells and tissues may contain residual undifferentiated iPSCs that could lead to teratoma formation after implantation into patients. As a consequence, highly sensitive and specific methods for detecting residual undifferentiated iPSCs are indispensable for safety evaluations of iPSC-based therapies.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2021
Off-target editing is one of the main safety concerns for the use of CRISPR-Cas9 genome editing in gene therapy. These unwanted modifications could lead to malignant transformation, which renders tumorigenicity assessment of gene therapy products indispensable. In this study, we established two transformation assays, the soft agar colony-forming assay (SACF) and the growth in low attachment assay (GILA) as alternative methods for tumorigenicity evaluation of genome-edited cells.
View Article and Find Full Text PDFGut-associated lymphoid tissue (GALT) carcinoma is a colorectal neoplasm characterized by cystically dilated neoplastic glands that extend into prominent, well-circumscribed submucosal lymphoid tissue. Although often subtle, lamina propria between and around the neoplastic glands (identified by plasma cells, scattered eosinophils, etc.) is frequent in cases with classic morphology, arguing (at least in such cases) in favor of adenoma extending into lymphoglandular complexes rather than true invasive carcinoma.
View Article and Find Full Text PDFBladder cancer (BlCa) exhibits a gender disparity where men are three times more likely to develop the malignancy than women suggesting a role for the androgen receptor (AR). Here we report that BlCa cells express low molecular weight (LMW) AR isoforms that are missing the ligand binding domain (LBD). Isoform expression was detected in most BlCa cells, while a few express the full-length AR.
View Article and Find Full Text PDFProstate cancer (PCa) is characterized by a unique dependence on optimal androgen receptor (AR) activity where physiological androgen concentrations induce proliferation but castrate and supraphysiological levels suppress growth. This feature has been exploited in bipolar androgen therapy (BAT) for castrate resistant malignancies. Here, we investigated the role of the tumor suppressor protein p14ARF in maintaining optimal AR activity and the function of the AR itself in regulating p14ARF levels.
View Article and Find Full Text PDFPluripotent stem cells offer the potential for an unlimited source for cell therapy products. However, there is concern regarding the tumorigenicity of these products in humans, mainly due to the possible unintended contamination of undifferentiated cells or transformed cells. Because of the complex nature of these new therapies and the lack of a globally accepted consensus on the strategy for tumorigenicity evaluation, a case-by-case approach is recommended for the risk assessment of each cell therapy product.
View Article and Find Full Text PDFErythropoietin (Epo) is essential for erythropoiesis and is mainly produced by the fetal liver and the adult kidney following hypoxic stimulation. Epo regulation is commonly studied in hepatoma cell lines, but differences in Epo regulation between kidney and liver limit the understanding of Epo dysregulation in polycythaemia and anaemia. To overcome this limitation, we have generated a novel transgenic mouse model expressing Cre recombinase specifically in the active fraction of renal Epo-producing (REP) cells.
View Article and Find Full Text PDFTreatment options for high grade urothelial cancers are limited and have remained largely unchanged for several decades. Selinexor (KPT-330), a first in class small molecule that inhibits the nuclear export protein XPO1, has shown efficacy as a single agent treatment for numerous different malignancies, but its efficacy in limiting bladder malignancies has not been tested. In this study we assessed selinexor-dependent cytotoxicity in several bladder tumor cells and report that selinexor effectively reduced XPO1 expression and limited cell viability in a dose dependent manner.
View Article and Find Full Text PDFThe phosphorylation of histone H2AX in Serine 139 (gamma-H2AX) marks regions of DNA double strand breaks and contributes to the recruitment of DNA repair factors to the site of DNA damage. Gamma-H2AX is used widely as DNA damage marker in vitro, but its use for genotoxicity assessment in vivo has not been extensively investigated. Here, we developed an image analysis system for the precise quantification of the gamma-H2AX signal, which we used to monitor DNA damage in animals treated with known genotoxicants (EMS, ENU and doxorubicin).
View Article and Find Full Text PDFMelanoma patients treated with oncogenic BRAF inhibitors can develop cutaneous squamous cell carcinoma (cSCC) within weeks of treatment, driven by paradoxical RAS/RAF/MAPK pathway activation. Here we identify frequent TGFBR1 and TGFBR2 mutations in human vemurafenib-induced skin lesions and in sporadic cSCC. Functional analysis reveals these mutations ablate canonical TGFβ Smad signalling, which is localized to bulge stem cells in both normal human and murine skin.
View Article and Find Full Text PDFDicer expression is frequently altered in cancer and affects a wide array of cellular functions acting as an oncogene or tumor suppressor in varying contexts. It has been shown that Dicer expression is also deregulated in urothelial cell carcinoma of the bladder (UCCB) but the nature of this deregulation differs between reports. The aim of the present study was to gain a better understanding of the role of Dicer in bladder cancer to help determine its contribution to the disease.
View Article and Find Full Text PDFUrothelial cell carcinoma of the bladder (UCCB) is the most common form of bladder cancer and it is estimated that ~15,000 people in the United States succumbed to this disease in 2013. Bladder cancer treatment options are limited and research to understand the molecular mechanisms of this disease is needed to design novel therapeutic strategies. Recent studies have shown that microRNAs play pivotal roles in the progression of cancer.
View Article and Find Full Text PDFPARP inhibitors are mostly effective as anticancer drugs in association with DNA damaging agents. We have previously shown that the oncolytic adenovirus dl922-947 induces extensive DNA damage, therefore we hypothesized a synergistic antitumoral effect of the PARP inhibitor olaparib in association with dl922-947. Anaplastic thyroid carcinoma was chosen as model since it is a particularly aggressive tumor and, because of its localized growth, it is suitable for intratumoral treatment with oncolytic viruses.
View Article and Find Full Text PDFdl922-947 is an oncolytic adenovirus potentially suitable for the treatment of aggressive localized tumors, such as anaplastic thyroid carcinoma (ATC). In this study, we have analyzed the effects of dl922-947 in combination with ionizing radiations, testing different schedules of administration and observing synergistic effects only when ATC cells were irradiated 24 h prior to viral infection. Cells undergoing combined treatment exhibited a marked increase in cell death and viral replication, suggesting that irradiation blocks cells in a more permissive state for viral life cycle.
View Article and Find Full Text PDFFascins, a family of actin-bundling proteins, are expressed in a spatially and temporally restricted manner during development and often in cancer. Fascin 1 has a clear role in cell migration in vitro, but its role in vivo in mammals is not well understood. Here, we investigate the role of fascin 1 in the melanocyte lineage and in melanoma cells.
View Article and Find Full Text PDFOncolytic viruses represent a novel therapeutic approach for aggressive tumors, such as glioblastoma multiforme, which are resistant to available treatments. Autophagy has been observed in cells infected with oncolytic viruses; however, its role in cell death/survival is unclear. To elucidate the potential therapeutic use of autophagy modulators in association with viral therapy, we analyzed autophagy induction in human glioma cell lines U373MG and U87MG infected with the oncolytic adenovirus dl922-947.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2011
It has been reported previously that both Cdk1 and Cdk2 phosphorylate Chk1 in a cell-cycle dependent manner. Cdk-mediated phosphorylation is required for efficient activation of Chk1 and checkpoint proficiency in response to DNA damage. Here, we demonstrate that Cdk-mediated phosphorylation is also required for replication stress induced Chk1 activation and S/M checkpoint proficiency.
View Article and Find Full Text PDFBackground: The E2F/RB pathway is frequently disrupted in multiple human cancers. E2F3 levels are elevated in prostate tumors and E2F3 overexpression independently predicts clinical outcome. The goals of this study were to identify direct transcriptional targets of E2F3 in prostate tumor derived cells.
View Article and Find Full Text PDFChk1 is a key regulator of DNA damage checkpoint responses and genome stability in eukaryotes. To better understand how checkpoint proficiency relates to cancer development, we investigated the effects of genetic ablation of Chk1 in the mouse skin on tumors induced by chemical carcinogens. We found that homozygous deletion of Chk1 immediately before carcinogen exposure strongly suppressed benign tumor (papilloma) formation, and that the few, small lesions that formed in the ablated skin always retained Chk1 expression.
View Article and Find Full Text PDF