Cryptochromes (Crys) represent a multi-facetted class of proteins closely associated with circadian clocks. They have been shown to function as photoreceptors but also to fulfill light-independent roles as transcriptional repressors within the negative feedback loop of the circadian clock. In addition, there is evidence for Crys being involved in light-dependent magneto-sensing, and regulation of neuronal activity in insects, adding to the functional diversity of this cryptic protein class.
View Article and Find Full Text PDFMorphological evolution is driven both by coding sequence variation and by changes in regulatory sequences. However, how cis-regulatory modules (CRMs) evolve to generate entirely novel expression domains is largely unknown. Here, we reconstruct the evolutionary history of a lens enhancer located within a CRM that not only predates the lens, a vertebrate innovation, but bilaterian animals in general.
View Article and Find Full Text PDFInsect gustatory and odorant receptors (GRs and ORs) form a superfamily of novel transmembrane proteins, which are expressed in chemosensory neurons that detect environmental stimuli. Here we identify homologues of GRs (Gustatory receptor-like (Grl) genes) in genomes across Protostomia, Deuterostomia and non-Bilateria. Surprisingly, two Grls in the cnidarian Nematostella vectensis, NvecGrl1 and NvecGrl2, are expressed early in development, in the blastula and gastrula, but not at later stages when a putative chemosensory organ forms.
View Article and Find Full Text PDFThe Cryptochrome/Photolyase Family (CPF) represents an ancient group of widely distributed UV-A/blue-light sensitive proteins sharing common structures and chromophores. During the course of evolution, different CPFs acquired distinct functions in DNA repair, light perception and circadian clock regulation. Previous phylogenetic analyses of the CPF have allowed reconstruction of the evolution and distribution of the different CPF super-classes in the tree of life.
View Article and Find Full Text PDF