Multiple myeloma (MM) is accompanied by alterations to the normal plasma cell (PC) proteome, leading to changes to the tumor microenvironment and disease progression. There is a great need for understanding the consequences that lead to MM progression and for the discovery of new biomarkers that can aid clinical diagnostics and serve as targets for therapeutics. This study demonstrates the applicability of utilizing the single-cell high-definition liquid biopsy assay (HDSCA) and imaging mass cytometry to characterize the proteomic profile of myeloma.
View Article and Find Full Text PDFMultiple myeloma remains an incurable disease, and the cellular and molecular evolution from precursor conditions, including monoclonal gammopathy of undetermined significance and smoldering multiple myeloma, is incompletely understood. Here, we combine single-cell RNA and B cell receptor sequencing from fifty-two patients with myeloma precursors in comparison with myeloma and normal donors. Our comprehensive analysis reveals early genomic drivers of malignant transformation, distinct transcriptional features, and divergent clonal expansion in hyperdiploid versus non-hyperdiploid samples.
View Article and Find Full Text PDFB-cell maturation antigen (BCMA), a key regulator of B-cell proliferation and survival, is highly expressed in almost all cases of plasma cell neoplasms and B-lymphoproliferative malignancies. BCMA is a robust biomarker of plasma cells and a therapeutic target with substantial clinical significance. However, the expression of BCMA in circulating tumor cells of patients with hematological malignancies has not been validated for the detection of circulating plasma and B cells.
View Article and Find Full Text PDFMultiple myeloma is an incurable malignancy that initiates from a bone marrow resident clonal plasma cell and acquires successive mutational changes and genomic alterations, eventually resulting in tumor burden accumulation and end-organ damage. It has been recently recognized that myeloma secondary genomic events result in extensive sub-clonal heterogeneity both in localized bone marrow areas and circulating peripheral blood plasma cells. Rare genomic subclones, including myeloma initiating cells, could be the drivers of disease progression and recurrence.
View Article and Find Full Text PDF