Helix formation has been of ongoing interest because of its role in both natural and synthetic materials systems. It has been extensively studied in gel-based ribbons where swelling anisotropies drive out-of-plane bending. In contrast to approaches based on photolithography or mechanical bilayer construction, we use electron-beam patterning to create microscale ribbons at ∼1-100 μm length scales in pure homopolymer precursor films of poly(acrylic acid) (PAA).
View Article and Find Full Text PDFPurpose: To explore the rehabilitation goals and evaluate goal attainment outcomes of people with severe acquired brain injury (ABI), and investigate the relationship between goal engagement and goal attainment.
Materials And Methods: Mixed-methods cohort study with twenty-nine adults with severe ABI in Australia. Demographic data, goal statements and pre-post program Goal Attainment Scale scores as well as Goal Engagement Scale scores were collected.
Despite advancements in vaccinology, there is currently no effective anti-HIV vaccine. One strategy under investigation is based on the identification of epitopes recognized by broadly neutralizing antibodies to include in vaccine preparation. Taking into account the benefits of anti-idiotype molecules and the diverse biological attributes of different antibody formats, our aim was to identify the most immunogenic antibody format.
View Article and Find Full Text PDFShape-shifting helical gels have been created by various routes, notably by photolithography. We explore electron-beam lithography as an alternative to prescribe microhelix formation in tethered patterns of pure poly(acrylic acid). Simulations indicate the nanoscale spatial distribution of deposited energy that drives the loss of acid groups and crosslinking.
View Article and Find Full Text PDFEver since its discovery, human immunodeficiency virus type 1 (HIV-1) infection has remained a significant public health concern. The number of HIV-1 seropositive individuals currently stands at 40.1 million, yet definitive treatment for the virus is still unavailable on the market.
View Article and Find Full Text PDFWe have studied the complexation between cationic antimicrobials and polyanionic microgels to create self-defensive surfaces that responsively resist bacterial colonization. An essential property is the stable sequestration of the loaded (complexed) antimicrobial within the microgel under a physiological ionic strength. Here, we assess the complexation strength between poly(acrylic acid) [PAA] microgels and a series of cationic peptoids that display supramolecular structures ranging from an oligomeric monomer to a tetramer.
View Article and Find Full Text PDFBackground: Deficits in visuospatial attention, known as neglect, are common following brain injury, but underdiagnosed and poorly treated, resulting in long-term cognitive disability. In clinical settings, neglect is often assessed using simple pen-and-paper tests. While convenient, these cannot characterise the full spectrum of neglect.
View Article and Find Full Text PDFAntimicrobial strategies for musculoskeletal infections are typically first developed with in vitro models. The In Vitro Section of the 2023 Orthopedic Research Society Musculoskeletal Infection international consensus meeting (ICM) probed our state of knowledge of in vitro systems with respect to bacteria and biofilm phenotype, standards, in vitro activity, and the ability to predict in vivo efficacy. A subset of ICM delegates performed systematic reviews on 15 questions and made recommendations and assessment of the level of evidence that were then voted on by 72 ICM delegates.
View Article and Find Full Text PDFBackground: In neurorehabilitation, problems with visuospatial attention, including unilateral spatial neglect, are prevalent and routinely assessed by pen-and-paper tests, which are limited in accuracy and sensitivity. Immersive virtual reality (VR), which motivates a much wider (more intuitive) spatial behaviour, promises new futures for identifying visuospatial atypicality in multiple measures, which reflects cognitive and motor diversity across individuals with brain injuries.
Methods: In this pilot study, we had 9 clinician controls (mean age 43 years; 4 males) and 13 neurorehabilitation inpatients (mean age 59 years; 9 males) recruited a mean of 41 days post-injury play a VR visual search game.
Human Immunodeficiency Virus (HIV) is still one of the major global health issues, and despite significant efforts that have been put into studying the pathogenesis of HIV infection, several aspects need to be clarified, including how innate immunity acts in different anatomical compartments. Given the nature of HIV as a sexually transmitted disease, one of the aspects that demands particular attention is the mucosal innate immune response. Given this scenario, we focused our attention on the interplay between HIV and mucosal innate response: the different mucosae act as a physical barrier, whose integrity can be compromised by the infection, and the virus-cell interaction induces the innate immune response.
View Article and Find Full Text PDFACS Biomater Sci Eng
November 2022
Self-defensive antimicrobial surfaces are of interest because they can inhibit bacterial colonization while minimizing unnecessary antimicrobial release in the absence of a bacterial challenge. One self-defensive approach uses self-assembly to first deposit a submonolayer coating of polyelectrolyte microgels and subsequently load those microgels by complexation with small-molecule antimicrobials. The microgel/antimicrobial complexation strength is a key parameter that controls the ability of the antimicrobial both to remain sequestered within the microgels when exposed to medium and to release in response to a bacterial challenge.
View Article and Find Full Text PDFThe spread of multidrug-resistant (MDR) K. pneumoniae carbapenemase-producing bacteria (KPC) is one of the most serious threats to global public health. Due to the limited antibiotic options, colis- tin often represents a therapeutic choice.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
November 2022
Infection associated with tissue-contacting biomedical devices is a compelling clinical problem initiated by the microbial colonization of the device surface. Among the possible sources of contaminating bacteria is the operating room (OR) itself, where viable bacteria in the atmosphere can sediment onto a device surface intraoperatively. We have developed an aerosolizing system that can reproducibly spray small quantities of aerosolized bacteria onto a surface to mimic OR contamination.
View Article and Find Full Text PDFAdenomatous polyps are precancerous lesions associated with a higher risk of colorectal cancer (CRC). Curcumin and anthocyanins have shown promising CRC-preventive activity in preclinical and epidemiological studies. The objective of this window-of-opportunity, proof-of principle trial was to evaluate the effect of curcumin combined with anthocyanin supplements on tissue biomarkers of colorectal adenomatous polyps.
View Article and Find Full Text PDFNew benzo[]quinolin-10-ol derivatives with one or two 2-cyanoacrylic acid units were synthesized with a good yield in a one-step condensation reaction. Chemical structure and purity were confirmed using NMR spectroscopy and elemental analysis, respectively. The investigation of their thermal, electrochemical and optical properties was carried out based on differential scanning calorimetry, cyclic voltammetry, electronic absorption and photoluminescence measurements.
View Article and Find Full Text PDFDespite the fact that scanning electron microscopes (SEM) coupled with energy-dispersive X-ray microanalysis (EDS) has been commercially available for more than a half-century, SEM/EDS continues to develop and open new opportunities to study the morphology of advanced materials. This is particularly true in applications to hydrated soft matter. Developments in field-emission electron sources that enable low-voltage imaging of uncoated polymers, silicon-drift detectors that enable high-efficiency collection of X-rays characteristic of light elements, and cryogenic methods to effectively cryo-fix hydrated samples have opened new opportunities to apply techniques relatively well established in hard-materials applications to challenging new problems involving synthetic polymers.
View Article and Find Full Text PDFThe thermal, mechanical and electrical properties of polymeric composites combined using polythiophene (PT) dopped by FeCl and polyamide 6 (PA), in the aspect of conductive constructive elements for organic solar cells, depend on the molecular structure and morphology of materials as well as the method of preparing the species. This study was focused on disclosing the impact of the polythiophene content on properties of electrospun fibers. The elements for investigation were prepared using electrospinning applying two substrates.
View Article and Find Full Text PDFElastic constructive elements prepared by electrospinning using polyacrylonitrile/polyaniline (PAN/PANI) electroconductive composites were prepared and investigated in terms of their thermal and mechanical properties. This study was focused on the impact of the type of counterion of polyaniline and the PANI content in composites on the thermal, conductive and morphological properties of electrospun fibers. In this study, composites obtained from PANI doped with sulfuric acid showed the highest conductivity, and composites obtained from PANI doped with hydrochloric acid showed the highest thermal stability.
View Article and Find Full Text PDFThe effect of TiO nanostructures such as nanoparticles, nanowires, nanotubes on photoanode properties, and dye-sensitized solar cells photovoltaic parameters were studied. The series of dye-sensitized solar cells based on two dyes, that is, commercially N719 and synthesized 3,7'-bis(2-cyano-1-acrylic acid)-10-ethyl-phenothiazine were tested. Additionally, the devices containing a mixture of this sensitizer and chenodeoxycholic acid as co-adsorbent were fabricated.
View Article and Find Full Text PDFBackground: Total knee arthroplasty surgery (TKA) using prenavigated Patient Specific Instruments (PSI) technique represents one of the most recent technological evolutions in development of prosthetic surgery. The aim of this study was to evaluate kinematic and functional recovery of patients operated with prenavigated PSI technique compared to those operated with traditional technique.
Methods: A cohort of 20 patients is divided in two groups; some are operated with traditional technique (with NexGen Knee system) and others with prenavigated PSI technique (with eMP Knee system) at Asiago Hospital.
Ultrasound is an effective tool to detect and characterize lesions of the uterosacral ligament, parametrium, and paracervix. They may be the site of diseases such as endometriosis and the later stages of cervical cancer. Endometriosis and advanced stages of cervical cancer may infiltrate the parametrium and may also involve the ureter, resulting in a more complex surgery.
View Article and Find Full Text PDFWe use electron-beam patterned functional microgels to integrate self-reporting molecular beacons, dielectric microlenses, and solid-phase and/or solution-phase nucleic acid amplification in a viral-detection microarray model. The detection limits for different combinations of these elements range from 10-10 M for direct target-beacon hybridization alone to 10-18 M when all elements are integrated simultaneously.
View Article and Find Full Text PDFBecause of its widely known antifouling properties, a variety of lithographic approaches has been used to pattern surfaces with poly(ethylene glycol) (PEG) to control surface interactions with biomolecules and cells over micro- and nanolength scales. Often, however, particular applications need additional functions within PEG-patterned surfaces. Monofunctional films can be generated using PEG modified to include a chemically functional group.
View Article and Find Full Text PDFTransfer of the excellent intrinsic properties of individual carbon nanoparticles into real-life applications of the corresponding heat transfer fluids remains challenging. This process requires identification and quantification of the nanoparticle-liquid interface. Here, for the first time, we have determined geometry and properties of this interface by applying transmission electron cryomicroscopy (cryo-TEM).
View Article and Find Full Text PDF