Tissue development relies on the coordinated differentiation of stem cells in dynamically changing environments. The formation of the vertebrate neural tube from stem cells in the caudal lateral epiblast (CLE) is a well characterized example. Despite an understanding of the signalling pathways involved, the gene regulatory mechanisms remain poorly defined.
View Article and Find Full Text PDFThe formation of the vertebrate body involves the coordinated production of trunk tissues from progenitors located in the posterior of the embryo. Although in vitro models using pluripotent stem cells replicate aspects of this process, they lack crucial components, most notably the notochord-a defining feature of chordates that patterns surrounding tissues. Consequently, cell types dependent on notochord signals are absent from current models of human trunk formation.
View Article and Find Full Text PDFBackground: Lipid metabolic reprogramming is increasingly recognized as a hallmark of endocrine resistance in estrogen receptor-positive (ER+) breast cancer. In this study, we investigated alterations in lipid metabolism in ER+ breast cancer cell lines with acquired resistance to common endocrine therapies and evaluated the efficacy of a clinically relevant fatty acid synthase (FASN) inhibitor.
Methods: ER+ breast cancer cell lines resistant to Tamoxifen (TamR), Fulvestrant (FulvR), and long-term estrogen withdrawal (EWD) were derived.
Loss of ovarian function imparts increased susceptibility to obesity and metabolic disease. These effects are largely attributed to decreased estradiol (E), but the role of increased follicle-stimulating hormone (FSH) in modulating energy balance has not been fully investigated. Previous work that blocked FSH binding to its receptor in mice suggested this hormone may play a part in modulating body weight and energy expenditure after ovariectomy (OVX).
View Article and Find Full Text PDFBackground: People living with dementia (PLWD) have complex medication regimens, exposing them to increased risk of harm. Pragmatic deprescribing strategies that align with patient-care partner goals are needed.
Methods: A pilot study of a pharmacist-led intervention to optimize medications with patient-care partner priorities, ran May 2021-2022 at two health systems.
In the nascent mesoderm, TBXT expression must be precisely regulated to ensure that cells exit the primitive streak and pattern the anterior-posterior axis, but how varying dosage informs morphogenesis is not well understood. In this study, we define the transcriptional consequences of TBXT dosage reduction during early human gastrulation using human induced pluripotent stem cell models of gastrulation and mesoderm differentiation. Multi-omic single-nucleus RNA and single-nucleus ATAC sequencing of 2D gastruloids comprising wild-type, TBXT heterozygous or TBXT null human induced pluripotent stem cells reveal that varying TBXT dosage does not compromise the ability of a cell to differentiate into nascent mesoderm, but instead directly influences the temporal progression of the epithelial-to-mesenchymal transition with wild type transitioning first, followed by TBXT heterozygous and then TBXT null.
View Article and Find Full Text PDFIn the nascent mesoderm, levels of Brachyury (TBXT) expression must be precisely regulated to ensure cells exit the primitive streak and pattern the anterior-posterior axis, but how this varying dosage informs morphogenesis is not well understood. In this study, we define the transcriptional consequences of TBXT dose reduction during early human gastrulation using human induced pluripotent stem cell (hiPSC)-based models of gastrulation and mesoderm differentiation. Multiomic single-nucleus RNA and single-nucleus ATAC sequencing of 2D gastruloids comprised of WT, TBXT heterozygous (TBXT-Het), or TBXT null (TBXT-KO) hiPSCs reveal that varying TBXT dosage does not compromise a cell's ability to differentiate into nascent mesoderm, but that the loss of TBXT significantly delays the temporal progression of the epithelial to mesenchymal transition (EMT).
View Article and Find Full Text PDFProteomic methods for RNA interactome capture (RIC) rely principally on crosslinking native or labeled cellular RNA to enrich and investigate RNA-binding protein (RBP) composition and function in cells. The ability to measure RBP activity at individual binding sites by RIC, however, has been more challenging due to the heterogenous nature of peptide adducts derived from the RNA-protein crosslinked site. Here, we present an orthogonal strategy that utilizes clickable electrophilic purines to directly quantify protein-RNA interactions on proteins through photoaffinity competition with 4-thiouridine (4SU)-labeled RNA in cells.
View Article and Find Full Text PDFA gradual decline in renal function occurs even in healthy aging individuals. In addition to aging, per se, concurrent metabolic syndrome and hypertension, which are common in the aging population, can induce mitochondrial dysfunction and inflammation, which collectively contribute to age-related kidney dysfunction and disease. This study examined the role of the nuclear hormone receptors, the estrogen-related receptors (ERRs), in regulation of age-related mitochondrial dysfunction and inflammation.
View Article and Find Full Text PDFBiological patterning events that occur early in development establish proper tissue morphogenesis. Identifying the mechanisms that guide these patterning events is necessary in order to understand the molecular drivers of development and disease and to build tissues in vitro. In this study, we use an in vitro model of gastrulation to study the role of tight junctions and apical/basolateral polarity in modulating bone morphogenic protein-4 (BMP4) signaling and gastrulation-associated patterning in colonies of human pluripotent stem cells (hPSCs).
View Article and Find Full Text PDFDiacylglycerol kinases (DGKs) are metabolic kinases involved in regulating cellular levels of diacylglycerol and phosphatidic lipid messengers. The development of selective inhibitors for individual DGKs would benefit from discovery of protein pockets available for inhibitor binding in cellular environments. Here we utilized a sulfonyl-triazole probe (TH211) bearing a DGK fragment ligand for covalent binding to tyrosine and lysine sites on DGKs in cells that map to predicted small molecule binding pockets in AlphaFold structures.
View Article and Find Full Text PDFStress granules (SGs) and processing-bodies (PBs, P-bodies) are ubiquitous and widely studied ribonucleoprotein (RNP) granules involved in cellular stress response, viral infection, and the tumor microenvironment. While proteomic and transcriptomic investigations of SGs and PBs have provided insights into molecular composition, chemical tools to probe and modulate RNP granules remain lacking. Herein, we combine an immunofluorescence (IF)-based phenotypic screen with chemoproteomics to identify sulfonyl-triazoles (SuTEx) capable of preventing or inducing SG and PB formation through liganding of tyrosine (Tyr) and lysine (Lys) sites in stressed cells.
View Article and Find Full Text PDFCognition is flexible. Behaviors can change on a moment-by-moment basis. Such flexibility is thought to rely on the brain's ability to route information through different networks of brain regions in order to support different cognitive computations.
View Article and Find Full Text PDFRegulatory T cells (Tregs) are not terminally differentiated but can acquire effector properties. Here we report an increased expression of human endogenous retrovirus 1 (HERV1-env) proteins in Tregs of patients with de novo autoimmune hepatitis and autoimmune hepatitis, which induces endoplasmic reticulum (ER) stress. HERV1-env-triggered ER stress activates all three branches (IRE1, ATF6, and PERK) of the unfolded protein response (UPR).
View Article and Find Full Text PDFBackground Knowledge of real-world antihypertensive use is limited to prevalent hypertension, limiting our understanding of how treatment evolves and its contribution to persistently poor blood pressure control. We sought to characterize antihypertensive initiation among new users. Methods and Results Using Medicaid and Medicare data from the OneFlorida+ Clinical Research Consortium, we identified new users of ≥1 first-line antihypertensives (angiotensin-converting enzyme inhibitor, calcium channel blocker, angiotensin receptor blocker, thiazide diuretic, or β-blocker) between 2013 and 2021 among adults with diagnosed hypertension, and no antihypertensive fill during the prior 12 months.
View Article and Find Full Text PDFBackground: Excessive repetitive behavior is a debilitating symptom of several neuropsychiatric disorders. Parvalbumin-positive inhibitory interneurons in the dorsal striatum have been linked to repetitive behavior, and a sizable portion of these cells are surrounded by perineuronal nets (PNNs), specialized extracellular matrix structures. Although PNNs have been associated with plasticity and neuropsychiatric disease, no previous studies have investigated their involvement in excessive repetitive behavior.
View Article and Find Full Text PDFSecretory epithelial cells (sMEC) in mammary glands of lactating animals secrete lipids by a novel apocrine mechanism in which cytoplasmic lipid droplets (LD) contact and are enveloped by elements of the apical plasma membrane (APM) before being released into the lumen of the gland as membrane bound structures. The molecular properties of LD-APM contacts and the mechanisms regulating LD membrane envelopment and secretion are not fully understood. Perilipin-2 (Plin2) is a constitutive LD protein that has been proposed to tether LD to the APM through formation of a complex with the transmembrane protein, butyrophilin1a1 (BTN) and the redox enzyme, xanthine oxidoreductase (XOR).
View Article and Find Full Text PDFType 1 Natural Killer T-cells (NKT1 cells) play a critical role in mediating hepatic ischemia-reperfusion injury (IRI). Although hepatic steatosis is a major risk factor for preservation type injury, how NKT cells impact this is understudied. Given NKT1 cell activation by phospholipid ligands recognized presented by CD1d, we hypothesized that NKT1 cells are key modulators of hepatic IRI because of the increased frequency of activating ligands in the setting of hepatic steatosis.
View Article and Find Full Text PDFAdipose tissue secretions are depot-specific and vary based on anatomical location. Considerable attention has been focused on visceral (VAT) and subcutaneous (SAT) adipose tissue with regard to metabolic disease, yet our knowledge of the secretome from these depots is incomplete. We conducted a comprehensive analysis of VAT and SAT secretomes in the context of metabolic function.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is one of the most prevalent forms of chronic liver diseases and is causally linked to hepatic insulin resistance and reduced fatty acid oxidation. Therapeutic treatments targeting both hepatic insulin resistance and lipid oxidative metabolism are considered as feasible strategies to alleviate this disease. Emerging evidence suggests Estrogen-Related Receptor alpha (ERRα), the first orphan nuclear receptor identified, as a master regulator in energy homeostasis by controlling glucose and lipid metabolism.
View Article and Find Full Text PDFA subpopulation of adipocytes in the major adipose depots of mice is produced from hematopoietic stem cells rather than mesenchymal progenitors that are the source of conventional white and brown/beige adipocytes. To analyze the impact of hematopoietic stem cell-derived adipocytes (HSCDAs) in the adipose niche we transplanted HSCs in which expression of a diphtheria toxin gene was under the control of the adipocyte-specific adiponectin gene promoter into irradiated wild type recipients. Thus, only adipocytes produced from HSC would be ablated while conventional white and brown adipocytes produced from mesenchymal progenitor cells would be spared.
View Article and Find Full Text PDFSodium-glucose co-transporters (SGLTs) serve to reabsorb glucose in the kidney. Recently, these transporters, mainly SGLT2, have emerged as new therapeutic targets for patients with diabetes and kidney disease; by inhibiting glucose reabsorption, they promote glycosuria, weight loss, and improve glucose tolerance. They have also been linked to cardiac protection and mitigation of liver injury.
View Article and Find Full Text PDF