Lithium metal anodes generally suffer from uncontrolled dendrite growth and large volume change, while traditional skeletons such as LiIn and LiSn are too heavy and discontinuous to offer highly efficient structural supportability for composite Li anodes. In this work, lightweight and stable fiber-clustered skeletons, which are composed of LiB fibers and jointed LiSi nanoparticles, can be obtained by smelting SiB powder and Li ingots. In addition to serving as both ionic and electronic conductors for composite Li anodes, the stable skeletons reduced volumetric fluctuation by offering uniform, heterogeneous, and continuous architectures while suppressing lithium dendrites with low nucleation overpotential and diffusion energy barrier.
View Article and Find Full Text PDFRechargeable sodium metal batteries are considered to be one of the most promising high energy density and cost-effective electrochemical energy storage systems. However, their practicality is constrained by the high reactivity of sodium metal anodes that readily brings about excessive accumulation of inactive Na species on the surface, either by chemical reactions with oxygen and moisture during electrode handling or through electrochemical processes with electrolytes during battery operation. Herein, this paper reports on an alkali, salt-assisted, assembly-polymerization strategy to recover Na activity and to reinforce the solid-electrolyte interphase (SEI) of sodium metal anodes.
View Article and Find Full Text PDFSci Bull (Beijing)
September 2024
Host-less lithium metal anode generally suffers from large volume changes and serious dendrite growth during cycling, which poses challenges for its practical application. Interpenetrating phase composites with continuous architectures offer a solution to enhance mechanical properties of materials. Herein, a robust composite Li anode (LBN) material is fabricated through the metallurgical reaction between Li and hexagonal boron nitride (h-BN) with the formation of interpenetrating LiB/LiBN phases.
View Article and Find Full Text PDFLithium (Li) dendritic growth and huge volume expansion seriously hamper Li-metal anode development. Herein, we design a lightweight 3D Li-ion-affinity host enabled by silver (Ag) nanoparticles fully decorating a porous melamine sponge (Ag@PMS) for dendrite-free and high-areal-capacity Li anodes. The compact Ag nanoparticles provide abundant preferred nucleation sites and give the host strong conductivity.
View Article and Find Full Text PDFHomogeneous dual-atom catalysts (HDACs) have garnered significant attention for their potential to overcome the shuttling effect and sluggish reaction kinetics in lithium-sulfur (Li-S) batteries. However, modulating the electron structure of metal atomic orbitals for HDACs to dictate the catalytic activity toward polysulfides has remained meaningful but unexplored so far. Herein, an interfacial cladding strategy is developed to obtain a new type of dual-atom iron matrix with a unique FeNP-FeNP coordination structure (Fe@NCP).
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
LiB alloy is promising lithium (Li) metal anode material because the continuous internal LiB fiber skeleton can effectively suppress Li dendrites and structural pulverization. However, the unvalued surface states limit the practical application of LiB alloy anodes. Herein, the study examined the influence of the different exposure manners of the internal LiB fiber skeleton owing to the various surface states of the LiB alloy anode on electrochemical performance and targetedly proposed a scalable friction coating strategy to construct a lithiated fumed silica (LFS) functional layer with abundant electrochemically active sites on the surface of the LiB alloy anode.
View Article and Find Full Text PDFWith the continuous expansion of the lithium-ion battery market, addressing the critical issues of stable cycling and low-temperature operation of lithium-ion batteries (LIBs) has become an urgent necessity. The high anisotropy and poor kinetics of pristine graphite in LIBs contribute to the formation of precipitated lithium dendrites, especially during rapid charging or low-temperature operation. In this study, we design a graphite coated with amorphous carbon (GC) through the Chemical Vapor Deposition (CVD) method.
View Article and Find Full Text PDFInspired by dative boron-nitrogen (B←N) bonds proven to be the promising dynamic linkage for the construction of crystalline covalent organic polymers/frameworks (COPs/COFs), we employed 1,4-bis(benzodioxaborole) benzene (BACT) and N,N'-Di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxdiimide (DPNTCDI) as the corresponding building blocks to construct a functional COP (named as CityU-25), which had been employed as an anode in rechargeable lithium ion batteries. CityU-25 displayed an excellent reversible lithium storage capability of 455 mAh/g after 170 cycles at 0.1 A/g, and an impressive one of 673 mAh/g after 720 cycles at 0.
View Article and Find Full Text PDFConstructing three-dimensional (3D) current collectors is an effective strategy to solve the hindrance of the development of lithium metal anodes (LMAs). However, the excessive mass of the metallic scaffold structure leads to a decrease in energy density. Herein, lithiophilic graphene aerogels comprising reduced graphene oxide aerogels and silver nanowires (rGO-AgNW) are synthesized through chemical reduction and freeze-drying techniques.
View Article and Find Full Text PDFLi-rich Mn-based layered oxides (LMLOs) are expected to be the most promising high-capacity cathodes for the next generation of lithium-ion batteries (LIBs). However, the poor cycling stability and kinetics performance of polycrystalline LMLOs restrict their practical applications due to the anisotropic lattice stress and crack propagation during cycling. Herein, B-doped micron-sized single-crystal Co-free LMLOs were obtained by molten-salt (LiNO and HBO)-assisted sintering.
View Article and Find Full Text PDFLithium (Li) metal batteries are considered the most promising high-energy-density electrochemical energy storage devices of the next generation. However, the unstable solid-electrolyte interphase (SEI) derived from electrolytes usually leads to high impedance, Li dendrites growth, and poor cyclability. Herein, the ferroelectric BaTiO with orderly arranged dipoles (BTOV) is integrated into the polypropylene separator as a functional layer.
View Article and Find Full Text PDFWadsley-Roth niobium oxide phases have attracted extensive research interest recently as promising battery anodes. We have synthesized the niobium-molybdenum oxide shear phase (Nb, Mo) O with superior electrochemical Li-ion storage performance, including an ultralong cycling lifespan of at least 15000 cycles. During electrochemical cycling, a reversible single-phase solid-solution reaction with lithiated intermediate solid solutions is demonstrated using in situ X-ray diffraction, with the valence and short-range structural changes of the electrode probed by in situ Nb and Mo K-edge X-ray absorption spectroscopy.
View Article and Find Full Text PDFHigh-voltage lithium metal batteries (LMBs) have been considered promising next-generation high-energy-density batteries. However, commercial carbonate electrolytes can scarcely be employed in LMBs owing to their poor compatibility with metallic lithium. N,N-dimethylacrylamide (DMAA)-a crosslinkable solubilizer with a high Gutmann donor number-is employed to facilitate the dissolution of insoluble lithium nitrate (LiNO) in carbonate-based electrolytes and to form gel polymer electrolytes (GPEs) through in situ polymerization.
View Article and Find Full Text PDFThe practical application of Li metal anodes (LMAs) is limited by uncontrolled dendrite growth and side reactions. Herein, we propose a new friction-induced strategy to produce high-performance thin Li anode (Li@CFO). By virtue of the in situ friction reaction between fluoropolymer grease and Li strips during rolling, a robust organic/inorganic hybrid interlayer (lithiophilic LiF/LiC framework hybridized -CF-O-CF- chains) was formed atop Li metal.
View Article and Find Full Text PDFThe development of lithium (Li) metal batteries (LMBs) has been limited by problems, such as severe dendrite growth, drastic interfacial reactions, and large volume change. Herein, an LMB (8AP@LiB) combining agraphene oxide-poly(ethylene oxide) (PEO) functionalized polypropylene separator (8AP) with a lithium-boron (LiB) anode is designed to overcome these problems. Raman results demonstrate that the PEO chain on 8AP can influence the Li solvation structure in the electrolyte, resulting in Li homogeneous diffusion and Li deposition barrier reduction.
View Article and Find Full Text PDFThe practical implementation of the lithium metal anode (LMA) has long been pursued due to its extremely high specific capacity and low electrochemical equilibrium potential. However, the unstable interfaces resulting from lithium ultrahigh reactivity have significantly hindered the use of LMA. This instability directly leads to dendrite growth behavior, dead lithium, low Coulombic efficiency, and even safety concerns.
View Article and Find Full Text PDFA practical high-specific-energy Li metal battery requires thin (≤20 μm) and free-standing Li metal anodes, but the low melting point and strong diffusion creep of lithium metal impede their scalable processing towards thin-thickness and free-standing architecture. In this paper, thin (5 to 50 μm) and free-standing lithium strips were achieved by mechanical rolling, which is determined by the in situ tribochemical reaction between lithium and zinc dialkyldithiophosphate (ZDDP). A friction-induced organic/inorganic hybrid interface (~450 nm) was formed on Li with an ultra-high hardness (0.
View Article and Find Full Text PDFLithium metal is considered as a promising anode material for next generation lithium-based batteries due to its highest specific capacity and lowest reduction potential. However, irreversible lithium stripping/depositing gives rise to severe dendritic growth and countless dead lithium, which lead to rapid electrochemical performance degradation and increased safety hazards, and thus limit its large-scale application. Herein, this work demonstrates a universal hydrogen-bond-induced strategy to in situ form a highly polarized ferroelectric polyvinylidene fluoride (PVDF) coating on the anode current collector.
View Article and Find Full Text PDF