Publications by authors named "Liavonchanka A"

Most monoclonal antibodies (mAbs) generated from humans infected or vaccinated with the 2009 pandemic H1N1 (pdmH1N1) influenza virus targeted the hemagglutinin (HA) stem. These anti-HA stem mAbs mostly used IGHV1-69 and bound readily to epitopes on the conventional seasonal influenza and pdmH1N1 vaccines. The anti-HA stem mAbs neutralized pdmH1N1, seasonal influenza H1N1 and avian H5N1 influenza viruses by inhibiting HA-mediated fusion of membranes and protected against and treated heterologous lethal infections in mice with H5N1 influenza virus.

View Article and Find Full Text PDF

Background: The aim of this study was to determine the catalytic activity and physiological role of myosin-cross-reactive antigen (MCRA) from Bifidobacterium breve NCIMB 702258. MCRA from B. breve NCIMB 702258 was cloned, sequenced and expressed in heterologous hosts (Lactococcus and Corynebacterium) and the recombinant proteins assessed for enzymatic activity against fatty acid substrates.

View Article and Find Full Text PDF

The myosin cross-reactive antigen (MCRA) protein family is highly conserved among different bacterial species ranging from Gram-positive to Gram-negative bacteria. Besides their ubiquitous occurrence, knowledge about the biochemical and physiological function of MCRA proteins is scarce. Here, we show that MCRA protein from Streptococcus pyogenes M49 is a FAD enzyme, which acts as hydratase on (9Z)- and (12Z)-double bonds of C-16, C-18 non-esterified fatty acids.

View Article and Find Full Text PDF

The catalytic mechanism of Propionibacterium acnes polyunsaturated fatty acid isomerase (PAI) is explored by kinetic, spectroscopic, and thermodynamic studies. The PAI-catalyzed double bond isomerization takes place by selective removal of the pro-R hydrogen from C-11 followed by suprafacial transfer of this hydrogen to C-9 as shown by conversion of C-9-deuterated substrate isotopologs. Data on the midpoint potential, photoreduction, and cofactor replacement suggest PAI to operate via an ionic mechanism with the formation of FADH(2) and linoleic acid carbocation as intermediates.

View Article and Find Full Text PDF

Lipoxygenases (LOX) form a heterogeneous family of lipid peroxidizing enzymes, which catalyze specific dioxygenation of polyunsaturated fatty acids. According to their positional specificity of linoleic acid oxygenation plant LOX have been classified into linoleate 9- and linoleate 13-LOX and recent reports identified a critical valine at the active site of 9-LOX. In contrast, more bulky phenylalanine or histidine residues were found at this position in 13-LOX.

View Article and Find Full Text PDF

The biotransformation of linoleic acid (LA) into conjugated linoleic acid (CLA) by microorganisms is a potentially useful industrial process. In most cases, however, the identities of proteins involved and the details of enzymatic activity regulation are far from clear. Here we summarize available data on the reaction mechanisms of CLA-producing enzymes characterized until now, from Butyrivibrio fibrisolvens, Lactobacillus acidophilus, Ptilota filicina, and Propionibacterium acnes.

View Article and Find Full Text PDF

The polyenoic fatty-acid isomerase from Propionibacterium acnes (PAI) catalyzes the double-bond isomerization of linoleic acid to conjugated linoleic acid, which is a dairy- or meat-derived fatty acid in the human diet. PAI was overproduced in Escherichia coli and purified to homogeneity as a yellow-coloured protein. The nature of the bound cofactor was analyzed by absorption and fluorescence spectroscopy.

View Article and Find Full Text PDF

Conjugated linoleic acids (CLAs) affect body fat gain, carcinogenesis, insulin resistance, and lipid peroxidation in mammals. Several isomers of CLA exist, of which the (9Z, 11E) and (10E, 12Z) isomers have beneficial effects on human metabolism but are scarce in foods. Bacterial polyunsaturated fatty acid isomerases are promising biotechnological catalysts for CLA production.

View Article and Find Full Text PDF

Lipid peroxidation is common to all biological systems, both appearing in developmentally and environmentally regulated processes. Products are hydroperoxy polyunsaturated fatty acids and metabolites derived there from collectively named oxylipins. They may either originate from chemical oxidation or are synthesized by the action of various enzymes, such as lipoxygenases (LOXes).

View Article and Find Full Text PDF