Selective recognition and transport of Na and Ca ions by sodium-calcium exchanger (NCX) proteins is a primary prerequisite for Ca signaling and homeostasis. Twelve ion-coordinating residues are highly conserved among NCXs, and distinct NCX orthologs contain two or three carboxylates, while sharing a common ion-exchange stoichiometry (3Na :1Ca ). How these structural differences affect the ion-binding affinity, selectivity, and transport rates remains unclear.
View Article and Find Full Text PDFProkaryotic and eukaryotic Na/Ca exchangers (NCX) control Ca homeostasis. NCX orthologs exhibit up to 10-fold differences in their turnover rates (k), whereas the ratios between the cytosolic (cyt) and extracellular (ext) K values (K = K/K) are highly asymmetric and alike (K ≤ 0.1) among NCXs.
View Article and Find Full Text PDFNa/Ca exchanger (NCX) proteins operate through the alternating access mechanism, where the ion-binding pocket is exposed in succession either to the extracellular or the intracellular face of the membrane. The archaeal NCX_Mj ( NCX) system was used to resolve the backbone dynamics in the inward-facing (IF) and outward-facing (OF) states by analyzing purified preparations of apo- and ion-bound forms of NCX_Mj-WT and its mutant, NCX_Mj-5L6-8. First, the exposure of extracellular and cytosolic vestibules to the bulk phase was evaluated as the reactivity of single cysteine mutants to a fluorescent probe, verifying that NCX_Mj-WT and NCX_Mj-5L6-8 preferentially adopt the OF and IF states, respectively.
View Article and Find Full Text PDFIn analogy with many other proteins, Na(+)/Ca(2+) exchangers (NCX) adapt an inverted twofold symmetry of repeated structural elements, while exhibiting a functional asymmetry by stabilizing an outward-facing conformation. Here, structure-based mutant analyses of the Methanococcus jannaschii Na(+)/Ca(2+) exchanger (NCX_Mj) were performed in conjunction with HDX-MS (hydrogen/deuterium exchange mass spectrometry) to identify the structure-dynamic determinants of functional asymmetry. HDX-MS identified hallmark differences in backbone dynamics at ion-coordinating residues of apo-NCX_Mj, whereas Na(+)or Ca(2+) binding to the respective sites induced relatively small, but specific, changes in backbone dynamics.
View Article and Find Full Text PDFDynamic features of Ca(2+) interactions with transport and regulatory sites control the Ca(2+)-fluxes in mammalian Na(+)/Ca(2+)(NCX) exchangers bearing the Ca(2+)-binding regulatory domains on the cytosolic 5L6 loop. The crystal structure of Methanococcus jannaschii NCX (NCX_Mj) may serve as a template for studying ion-transport mechanisms since NCX_Mj does not contain the regulatory domains. The turnover rate of Na(+)/Ca(2+) exchange (kcat=0.
View Article and Find Full Text PDF