Publications by authors named "Liat Rousso-Noori"

Article Synopsis
  • Glioblastoma is a highly aggressive brain cancer in adults, and current treatments with temozolomide and radiotherapy often fail to stop local tumor recurrence due to limited drug penetration into the brain.
  • Researchers created gold nanoparticles coated with insulin to help deliver tumor-targeting antibodies into the brain while overcoming the blood-brain barrier.
  • In mouse models, this new approach improved tumor growth control and survival rates when combined with existing treatments, showing effectiveness in destroying tumor cells and reducing tumor-related blood vessel growth.
View Article and Find Full Text PDF

Recent multi-omics studies show different immune tumor microenvironment (TME) compositions in glioblastoma (GBM). However, temporal comprehensive knowledge of the TME from initiation of the disease remains sparse. We use Cre recombinase (Cre)-inducible lentiviral murine GBM models to compare the cellular evolution of the immune TME in tumors initiated from different oncogenic drivers.

View Article and Find Full Text PDF

Glioblastoma is considered one of the most aggressive malignancies in adult and pediatric patients. Despite decades of research no curative treatment is available and it thus remains associated with a very dismal prognosis. Although recent pre-clinical and clinical studies have demonstrated the feasibility of chimeric antigen receptors (CAR) T cell immunotherapeutic approach in glioblastoma, tumor heterogeneity and antigen loss remain among one of the most important challenges to be addressed.

View Article and Find Full Text PDF

Interconversion of transformed non-stem cells to cancer stem cells, termed cancer cell plasticity, contributes to intra-tumor heterogeneity and its molecular mechanisms are currently unknown. Here, we have identified Tenascin C (TNC) to be upregulated and secreted in mesenchymal glioblastoma (MES GBM) subtype with high NF-κB signaling activity. Silencing TNC decreases proliferation, migration and suppresses self-renewal of glioma stem cells.

View Article and Find Full Text PDF

Photoactivation of bioactive molecules allows manipulation of cellular processes with high spatiotemporal precision. The recent emergence of visible-light excitable photoprotecting groups has the potential to further expand the established utility of the photoactivation strategy in biological applications by offering higher tissue penetration, diminished phototoxicity, and compatibility with other light-dependent techniques. Nevertheless, a critical barrier to such applications remains the significant hydrophobicity of most visible-light excitable photocaging groups.

View Article and Find Full Text PDF

Tumor-selective drug conjugates can potentially improve the prognosis for patients affected by glioblastoma (GBM) - the most common and malignant type of brain cancer with no effective cure. Here we evaluated a novel tumor penetrating peptide that targets cell surface p32, LinTT1 (AKRGARSTA), as a GBM targeting ligand for systemically-administered nanoparticles. LinTT1-functionalization increased tumor homing of iron oxide nanoworms (NWs) across a panel of five GBM models ranging from infiltratively-disseminating to angiogenic phenotypes.

View Article and Find Full Text PDF

Obesity and related morbidities pose a major health threat. Obesity is associated with increased blood concentrations of the anorexigenic hormone leptin; however, obese individuals are resistant to its anorexigenic effects. We examined the phenomenon of reduced leptin signaling in a high-fat diet-induced obesity model in mice.

View Article and Find Full Text PDF

Mitochondria are major suppliers of cellular energy through nutrients oxidation. Little is known about the mechanisms that enable mitochondria to cope with changes in nutrient supply and energy demand that naturally occur throughout the day. To address this question, we applied MS-based quantitative proteomics on isolated mitochondria from mice killed throughout the day and identified extensive oscillations in the mitochondrial proteome.

View Article and Find Full Text PDF

Polyamines are essential polycations present in all living cells. Polyamine levels are maintained from the diet and de novo synthesis, and their decline with age is associated with various pathologies. Here we show that polyamine levels oscillate in a daily manner.

View Article and Find Full Text PDF

Circadian clocks play a major role in orchestrating daily physiology, and their disruption can evoke metabolic diseases such as fatty liver and obesity. To study the role of circadian clocks in lipid homeostasis, we performed an extensive lipidomic analysis of liver tissues from wild-type and clock-disrupted mice either fed ad libitum or night fed. To our surprise, a similar fraction of lipids (∼17%) oscillated in both mouse strains, most notably triglycerides, but with completely different phases.

View Article and Find Full Text PDF

Molecular-level understanding of body weight control is essential for combating obesity. We show that female mice lacking tyrosine phosphatase epsilon (RPTPe) are protected from weight gain induced by high-fat food, ovariectomy, or old age and exhibit increased whole-body energy expenditure and decreased adiposity. RPTPe-deficient mice, in particular males, exhibit improved glucose homeostasis.

View Article and Find Full Text PDF

Cultured bone marrow stromal cells create an in vitro milieu supportive of long-term hemopoiesis and serve as a source for multipotent mesenchymal progenitor cells defined by their ability to differentiate into a variety of mesodermal derivatives. This study aims to examine whether the capacity to support myelopoiesis is coupled with the multipotency. Our results show that the myelopoietic supportive ability of stromal cells, whether from the bone marrow or from embryo origin, is not linked with multipotency; cell populations that possess multipotent capacity may or may not support myelopoiesis, whereas others, lacking multipotency, may possess full myelopoietic supportive ability.

View Article and Find Full Text PDF

In vitro and in vivo studies implicate a series of cytokines in regulation of lymphohematopoiesis. However, direct indications for a local role of most of these cytokines within the bone marrow is lacking. In the present study, we aimed to test the contribution of a specific cytokine, activin A, a member of the transforming growth factor-beta (TGF-beta) family, to lymphohematopoiesis in mouse bone marrow.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are widespread in adult organisms and may be involved in tissue maintenance and repair as well as in the regulation of hematopoiesis and immunologic responses. Thus, it is important to discover the factors controlling MSC renewal and differentiation. Here we report that adult MSCs express functional Toll-like receptors (TLRs), confirmed by the responses of MSCs to TLR ligands.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: