Publications by authors named "Liat Genosar"

Steady-state emission, femtosecond pump-probe spectroscopy, and time-correlated single-photon counting (TCSPC) measurements were used to study the photophysics and the excited-state proton transfer (ESPT) reactions in the green fluorescent protein (GFP) variant S65T/H148D at three pH values: 6.0, 7.9, and 9.

View Article and Find Full Text PDF

In a previous work, we proposed an extended model for intermolecular excited-state proton transfer to the solvent. The model invoked an intermediate species, the contact ion-pair RO(-)..

View Article and Find Full Text PDF

The reversible proton dissociation and geminate recombination of a photoacid is studied as a function of temperature in water electrolyte solutions and binary water-methanol mixtures, containing 0.1 and 0.2 mole fractions of methanol.

View Article and Find Full Text PDF

Picosecond time-correlated single-photon counting was used to measure the proton-transfer rate of green fluorescent protein (GFP) excited by several wavelengths between 266 and 405 nm. When samples of GFP in water and D2O are excited at short wavelengths, lambda(ex) < 295 nm, the fluorescence properties are largely modified with respect to excitation at a wavelength around 400 nm, the peak of the absorption band of the S0 --> S1 transition of the ROH form of the chromophore. The shorter the excitation wavelength, the longer the decay time of the ROH emission band at 450 nm and the longer the rise time of the RO- emission band at 512 nm.

View Article and Find Full Text PDF

A femtosecond pump-probe, with approximately 150 fs resolution, as well as time-correlated single photon counting with approximately 10 ps resolution techniques are used to probe the excited-state intermolecular proton transfer from HPTS to water. The pump-probe signal consists of two ultrafast components (approximately 0.8 and 3 ps) that precede the relatively slow (approximately 100 ps) component.

View Article and Find Full Text PDF

The pressure dependence of the excited-state proton dissociation rate constant of four photoacids, 2-naphthol-6,8-disulfonate (2N68DS), 10-hydroxycamptothecin (10-CPT), 5-cyano-2-naphthol (5CN2), and 5,8-dicyano-2-naphthol (DCN2), are studied in methanol. The results are compared with the results of the pressure dependence study we recently conducted for several photoacids in water, ethanol, and propanol. The pressure dependence is explained using an approximate stepwise two-coordinate proton transfer model.

View Article and Find Full Text PDF

Time-resolved emission and steady-state fluorescence techniques are used to study the excited-state intermolecular proton transfer from 8-hydroxypyrene-1,3,6-trisulfonate (HPTS or pyranine) to water in the presence of inert salts, NaCl and MgCl(2). At low salt concentrations, up to about 0.5 M MgCl(2) or about 0.

View Article and Find Full Text PDF