Biol Pharm Bull
December 2024
We have developed a novel cross-immune antigen vaccine platform for influenza A virus. The vaccine antigen is a fusion protein of headless hemagglutinin (HA) and matrix protein 1 (M1), which possess B-cell and T-cell epitopes, respectively, that are conserved among subgroup A viruses. The single molecule of headless HA and M1 fusion protein forms an oligomer by self-assembly of M1.
View Article and Find Full Text PDFHeparanase is an endoglucuronidase that uniquely cleaves the heparan sulfate side chains of heparan sulfate proteoglycans. This activity ultimately alters the structural integrity of the ECM and basement membrane that becomes more prone to cellular invasion by metastatic cancer cells and cells of the immune system. In addition, enzymatically inactive heparanase was found to facilitate the proliferation and survival of cancer cells by activation of signaling molecules such as Akt, Src, signal transducer and activation of transcription (Stat), and epidermal growth factor receptor.
View Article and Find Full Text PDFPlant-produced glycoproteins contain N-linked glycans with plant-specific residues of β(1,2)-xylose and core α(1,3)-fucose, which do not exist in mammalian-derived proteins. Although our experience with two enzymes that are used for enzyme replacement therapy does not indicate that the plant sugar residues have deleterious effects, we made a conscious decision to eliminate these moieties from plant-expressed proteins. We knocked out the β(1,2)-xylosyltranferase (XylT) and the α(1,3)-fucosyltransferase (FucT) genes, using CRISPR/Cas9 genome editing, in Nicotiana tabacum L.
View Article and Find Full Text PDFBackground: Heparanase is an endo-β-D-glucuronidase dominantly involved in tumor metastasis and angiogenesis. Recently, we demonstrated that heparanase is involved in the regulation of the hemostatic system. Our hypothesis was that heparanase is directly involved in activation of the coagulation cascade.
View Article and Find Full Text PDFHeparanase activity is strongly implicated in structural remodeling of the extracellular matrix, a process which can lead to invasion by tumor cells. In addition, heparanase augments signaling cascades leading to enhanced phosphorylation of selected protein kinases and increased gene transcription associated with aggressive tumor progression. This function is apparently independent of heparan sulfate and enzyme activity, and is mediated by a novel protein domain localized at the heparanase C-terminus.
View Article and Find Full Text PDFHeparanase is an endo-beta-d-glucuronidase capable of cleaving heparan sulfate, activity that is strongly implicated in cellular invasion associated with tumor metastasis, angiogenesis, and inflammation. In addition, heparanase was noted to exert biological functions apparently independent of its enzymatic activity, enhancing the phosphorylation of selected protein kinases and inducing gene transcription. A predicted three-dimensional structure of constitutively active heparanase clearly delineates a TIM-barrel fold previously anticipated for the enzyme.
View Article and Find Full Text PDFBglG and LicT are transcriptional antiterminators from Escherichia coli and Bacillus subtilis, respectively, that control the expression of genes and operons involved in transport and catabolism of carbohydrates. Both proteins contain a duplicate conserved domain, the PTS-regulation domain (PRD), and they are regulated by phosphorylation on specific, highly conserved histidine residues located in the PRDs. However, despite their similar function and the high sequence identity, experimental evidence implies different modes of regulation.
View Article and Find Full Text PDFThe BglG protein positively regulates expression of the bgl operon in Escherichia coli by binding as a dimer to the bgl transcript and preventing premature termination of transcription in the presence of beta-glucosides. BglG activity is negatively controlled by BglF, the beta-glucoside phosphotransferase, which reversibly phosphorylates BglG according to beta-glucoside availability, thus modulating its dimeric state. BglG consists of an RNA-binding domain and two homologous domains, PRD1 and PRD2.
View Article and Find Full Text PDFExpression of the bgl operon in Escherichia coli, induced by beta-glucosides, is positively regulated by BglG, a transcriptional antiterminator. In the presence of inducer, BglG dimerizes and binds to the bgl transcript to prevent premature termination of transcription. The dimeric state of BglG is determined by BglF, a membrane-bound enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), which reversibly phosphorylates BglG according to beta-glucoside availability.
View Article and Find Full Text PDFThe E. coli BglG protein inhibits transcription termination within the bgl operon in the presence of beta-glucosides. BglG represents a family of transcriptional antiterminators that bind to RNA sequences, which partially overlap rho-independent terminators, and prevent termination by stabilizing an alternative structure of the transcript.
View Article and Find Full Text PDF