Background/objective: Environmental exposure to anti-acetylcholinesterases (AChEs) aggravates the risk of Parkinsonism due to currently unclear mechanism(s). We explored the possibility that the brain's capacity to induce a widespread adaptive alternative splicing response to such exposure may be involved.
Methods: Following exposure to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), brain region transcriptome profiles were tested.
Much has been learned in recent years about the genetics of familial Parkinson's disease. However, far less is known about those malfunctioning genes which contribute to the emergence and/or progression of the vast majority of cases, the 'sporadic Parkinson's disease', which is the focus of our current review. Drastic differences in the reported prevalence of Parkinson's disease in different continents and countries suggest ethnic and/or environmental-associated multigenic contributions to this disease.
View Article and Find Full Text PDFThe 5.5 Mb chromosome 7q21-22 ACHE/PON1 locus harbours the ACHE gene encoding the acetylcholine hydrolyzing, organophosphate (OP)-inhibitable acetylcholinesterase protein and the paraoxonase gene PON1, yielding the OP-hydrolyzing PON1 enzyme which also displays arylesterase activity. In search of inherited and acquired ACHE-PON1 interactions we genotyped seven polymorphic sites and determined the hydrolytic activities of the corresponding plasma enzymes and of the AChE-homologous butyrylcholinesetrase (BChE) in 157 healthy Israelis.
View Article and Find Full Text PDFExposure to agricultural insecticides, together with yet incompletely understood predisposing genotype/phenotype elements, notably increase the risk of Parkinson's disease. Here, we report findings attributing the increased risk in an insecticide-exposed rural area in Israel to interacting debilitating polymorphisms in the ACHE/PON1 locus and corresponding expression variations. Polymorphisms that debilitate PON1 activity and cause impaired AChE overproduction under anticholinesterase exposure were strongly overrepresented in patients from agriculturally exposed areas, indicating that they confer risk of Parkinson's disease.
View Article and Find Full Text PDF