Publications by authors named "Liao Y Chen"

MhOR5, an insect olfactory receptor (OR), has an occluded binding site for the odorant eugenol in both the open and closed states of the ion channel. We used atomistic molecular dynamics simulation (MD) and steered molecular dynamics to examine possible tunnels to the odorant binding site from the protein surface. Four high probability tunnels were identified in the MD results.

View Article and Find Full Text PDF

Glucose transporter GLUT1 is ubiquitously expressed in the human body from the red cells to the blood-brain barrier to the skeletal muscles. It is physiologically relevant to understand how GLUT1 facilitates diffusion of glucose across the cell membrane. It is also pathologically relevant because GLUT1 deficiency causes neurological disorders and anemia and because GLUT1 overexpression fuels the abnormal growth of cancer cells.

View Article and Find Full Text PDF

AQP7 is one of the four human aquaglyceroporins that facilitate glycerol transport across the cell membrane, a biophysical process that is essential in human physiology. Therefore, it is interesting to compute AQP7's affinity for its substrate (glycerol) with reasonable certainty to compare with the experimental data suggesting high affinity in contrast with most computational studies predicting low affinity. In this study aimed at computing the AQP7-glycerol affinity with high confidence, we implemented a direct computation of the affinity from unbiased equilibrium molecular dynamics (MD) simulations of three all-atom systems constituted with 0.

View Article and Find Full Text PDF

Dopamine transporter mediates the neurotransmitter dopamine homeostasis in a sodium-dependent manner. The transport process involves an alternating access of a substrate to the extracellular and intracellular spaces, which is associated with different conformational states of the transporter. However, the underlying mechanism of modulation of the state transition remains elusive.

View Article and Find Full Text PDF

Pyruvate metabolism requires the mitochondrial pyruvate carrier (MPC) proteins to transport pyruvate from the intermembrane space through the inner mitochondrial membrane to the mitochondrial matrix. The lack of the atomic structures of MPC hampers the understanding of the functional states of MPC and molecular interactions with the substrate or inhibitor. Here, we develop the de novo models of human MPC complexes and characterize the conformational dynamics of the MPC heterodimer formed by MPC1 and MPC2 (MPC1/2) by computational simulations.

View Article and Find Full Text PDF

Dopamine transporter (DAT) and sigma-1 receptor (σ1R) are potential therapeutic targets to reduce the psychostimulant effects induced by methamphetamine (METH). Interaction of σ1R with DAT could modulate the binding of METH, but the molecular basis of the association of the two transmembrane proteins and how their interactions mediate the binding of METH to DAT or σ1R remain unclear. Here, we characterize the protein-ligand and protein-protein interactions at a molecular level by various theoretical approaches.

View Article and Find Full Text PDF

Cytochrome P450 2J2 (CYP2J2) is responsible for the epoxidation of endogenous arachidonic acid, and is involved in the metabolism of exogenous drugs. To date, no crystal structure of CYP2J2 is available, and the proposed structural basis for the substrate recognition and specificity in CYP2J2 varies with the structural models developed using different computational protocols. In this study, we developed a new structural model of CYP2J2, and explored its sensitivity to substrate binding by molecular dynamics simulations of the interactions with chemically similar fluorescent probes.

View Article and Find Full Text PDF

The structures of several aquaglyceroporins have been resolved to atomic resolution showing two or more glycerols bound inside a channel and confirming a glycerol-facilitator's affinity for its substrate glycerol. However, the kinetics data of glycerol transport experiments all point to unsaturated transport that is characteristic of low substrate affinity in terms of the Michaelis-Menten kinetics. In this article, we present an research focused on AQP3, one of the human aquaglyceroporins that is natively expressed in the abundantly available erythrocytes.

View Article and Find Full Text PDF

Dopamine (DA) transporter (DAT) is a major target for psychostimulant drugs of abuse such as cocaine that competitively binds to DAT, inhibits DA reuptake, and consequently increases synaptic DA levels. In addition to the central binding site inside DAT, the available experimental evidence suggests the existence of alternative binding sites on DAT, but detection and characterization of these sites are challenging by experiments alone. Here, we integrate multiple computational approaches to probe the potential binding sites on the wild-type DAT and identify a new allosteric site that displays high affinity for cocaine.

View Article and Find Full Text PDF

Modelling water and membrane lipids is an essential element in the computational research of biophysical/biochemical processes such as water transport across the cell membrane. In this study, we examined the accuracies of two popular water models, TIP3P and TIP4P, in the molecular dynamics simulations of erythrocyte aquaporins (AQP1 and AQP3). We modelled the erythrocyte membrane as an asymmetric lipid bilayer with appropriate lipid compositions of its inner and outer leaflet, in comparison with a symmetric lipid bilayer of a single lipid type.

View Article and Find Full Text PDF

Thermodynamic integration (TI), a powerful formalism for computing Gibbs free energy, has been implemented for many biophysical processes with alchemical schemes that require delicate human efforts to choose/design biasing potentials for sampling the desired biophysical events and to remove their artifactitious consequences afterwards. Theoretically, an alchemical scheme is exact but practically, an unsophisticated implementation of this exact formula can cause error amplifications. Small relative errors in the input parameters can be amplified many times in their propagation into the computed free energy [due to subtraction of similar numbers such as (105 ± 5)‒(100 ± 5) = 5 ± 7].

View Article and Find Full Text PDF

In this article, the Brownian dynamics fluctuation-dissipation theorem (BD-FDT) is applied to the study of transport of neutral solutes across the cellular membrane of Plasmodium berghei (Pb), a disease-causing parasite. Pb infects rodents and causes symptoms in laboratory mice that are comparable to human malaria caused by Plasmodium falciparum (Pf). Due to the relative ease of its genetic engineering, P.

View Article and Find Full Text PDF

The ubiquitous glucose transporter 1 (GLUT1) is physiologically and pathologically relevant in energy metabolism of the CNS, skeletal muscles, cancer cells etc. Extensive experiments on GLUT1 produced thorough understandings of its expressions, functions, and structures which were recently resolved to atomic accuracy. However, theoretical understandings are still controversial about how GLUT1 facilitates glucose diffusion across the cell membrane.

View Article and Find Full Text PDF

For its fundamental relevance, transport of water and glycerol across the erythrocyte membrane has long been investigated before and after the discovery of aquaporins (AQPs), the membrane proteins responsible for water and glycerol transport. AQP1 is abundantly expressed in the human erythrocyte for maintaining its hydrohomeostasis where AQP3 is also expressed (at a level ~30-folds lower than AQP1) facilitating glycerol transport. This research is focused on two of the remaining questions: How permeable is AQP3 to water? What is the glycerol-AQP3 affinity under near-physiological conditions? Through atomistic modelling and large-scale simulations, we found that AQP3 is two to three times more permeable to water than AQP1 and that the glycerol-AQP3 affinity is approximately 500/M.

View Article and Find Full Text PDF

Fourteen glucose transporters (GLUTs) play essential roles in human physiology by facilitating glucose diffusion across the cell membrane. Due to its central role in the energy metabolism of the central nervous system, GLUT3 has been thoroughly investigated. However, the Gibbs free-energy gradient (what drives the facilitated diffusion of glucose) has not been mapped out along the transport path.

View Article and Find Full Text PDF

Amyloid-β (Aβ) fibrils and plaques are one of the hallmarks of Alzheimer's disease. While the kinetics of fibrillar growth of Aβ have been extensively studied, several vital questions remain. In particular, the atomistic origins of the Arrhenius barrier observed in experiments have not been elucidated.

View Article and Find Full Text PDF

Glucose transporters (GLUTs), expressed in all types of human cells, are responsible for the uptake of sugars as the primary energy source for the normal functions of good cells and for the abnormal growth of cancer cells. The E. coli xylose permease (XylE), a homologue of human GLUTs, has been investigated more thoroughly than other major facilitator proteins in the current literature.

View Article and Find Full Text PDF

Measuring or computing the single-channel permeability of aquaporins/aquaglyceroporins (AQPs) has long been a challenge. The measured values scatter over an order of magnitude but the corresponding Arrhenius activation energies converge in the current literature. Osmotic flux through an AQP was simulated as water current forced through the channel by kilobar hydraulic pressure or theoretically approximated as single-file diffusion.

View Article and Find Full Text PDF

Amyloid-beta (Aβ) peptides, Aβ40 and the more neurotoxic Aβ42, have been the subject of many research efforts for Alzheimer's disease. In two recent independent investigations, the atomistic structure of Aβ42 fibril has been clearly established in the S-shaped conformation consisting of three β-sheets stabilized by salt bridges formed between the Lys28 sidechain and the C-terminus of Ala42. This structure distinctively differs from the long-known structure of Aβ40 in the β-hairpin shaped conformation consisting of two β-sheets.

View Article and Find Full Text PDF

Computing the ligand-protein binding affinity (or the Gibbs free energy) with chemical accuracy has long been a challenge for which many methods/approaches have been developed and refined with various successful applications. False positives and, even more harmful, false negatives have been and still are a common occurrence in practical applications. Inevitable in all approaches are the errors in the force field parameters we obtain from quantum mechanical computation and/or empirical fittings for the intra- and inter-molecular interactions.

View Article and Find Full Text PDF

Human carbonic anhydrase II (hCAII) represents an ultimate example of the perfectly efficient metalloenzymes, which is capable of catalyzing the hydration of carbon dioxide with a rate approaching the diffusion controlled limit. Extensive experimental studies of this physiologically important metalloprotein have been done to elucidate the fundamentals of its enzymatic actions: what residues anchor the Zn(2+) (or another divalent cation) at the bottom of the binding pocket; how the relevant residues work concertedly with the divalent cation in the reversible conversions between CO2 and HCO3(-); what are the protonation states of the relevant residues and acetazolamide, an inhibitor complexed with hCAII, etc. In this article, we present a detailed computational study on the basis of the all-atom CHARMM force field where Zn(2+) is represented with a simple model of divalent cation using the transferrable parameters available from the current literature.

View Article and Find Full Text PDF

Among the thirteen types of water channel proteins, aquaporins (AQPs), which play various essential roles in human physiology, AQP4 is richly expressed in cells of the central nervous system and implicated in pathological conditions such as brain edema. Therefore, researchers have been looking for ways to inhibit AQP4's water-conducting function. Many small molecules have been investigated for their interactions with the residues that form the AQP4 channel entry vestibule on the extracellular side and their interruption of waters entering into the conducting pore.

View Article and Find Full Text PDF

Nanometer-sized gold particles (AuNPs) are of peculiar interest because their behaviors in an aqueous solution are sensitive to changes in environmental factors including the size and shape of the solute ions. In order to determine these important characteristics, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates (4-mercaptobenzoate, pMBA) in eight aqueous solutions having ions of varying sizes and shapes (Na(+), K(+), tetramethylamonium cation TMA(+), tris-ammonium cation TRS(+), Cl(-), and OH(-)). For each solution, we computed the reversible work (potential of mean of force) to bring two nanoparticles together as a function of their separation distance.

View Article and Find Full Text PDF

Aquaporins and aquaglyceroporins (AQPs) are membrane channel proteins responsible for transport of water and for transport of glycerol in addition to water across the cell membrane, respectively. They are expressed throughout the human body and also in other forms of life. Inhibitors of human AQPs have been sought for therapeutic treatment for various medical conditions including hypertension, refractory edema, neurotoxic brain edema, and so forth.

View Article and Find Full Text PDF

Computing protein-protein association affinities is one of the fundamental challenges in computational biophysics/biochemistry. The overwhelming amount of statistics in the phase space of very high dimensions cannot be sufficiently sampled even with today's high-performance computing power. In this article, we extend a potential of mean force (PMF)-based approach, the hybrid steered molecular dynamics (hSMD) approach we developed for ligand-protein binding, to protein-protein association problems.

View Article and Find Full Text PDF