Publications by authors named "Liao Qiang"

It has been reported that the self-assembly pattern of light levitating droplet clusters above the hot gas-liquid interface is dependent on the quantity of droplets. However, the already-reported theoretical explanation of the quantity-dependent self-assembly pattern cannot work well when the quantity of the light levitating droplet exceeds 15. Herein, we propose a new theoretical perspective to understand the self-assembly of a light levitating droplet cluster by referring to the classical densest packing problem of identical rigid circles in a larger circle with the introduction of the minimum total potential energy principle.

View Article and Find Full Text PDF

Background: Hypertension and diabetes are major components of non-communicable diseases (NCDs), with a substantial number of patients residing in underdeveloped areas. Limited medical resources in these areas often results in underreporting of disease prevalence, masking the true extent of diseases. Taking the underdeveloped Liangshan Yi Autonomous Prefecture in China as an example, this study aimed to correct the underreported prevalence of hypertension and type 2 diabetes so as to provide inspiration for the allocation of medical resources in such areas.

View Article and Find Full Text PDF

Biofilm reactors, known for utilizing biofilm formation for cell immobilization, offer enhanced biomass concentration and operational stability over traditional planktonic systems. However, the dense nature of biofilms poses challenges for substrate accessibility to cells and the efficient release of products, making mass transfer efficiency a critical issue in these systems. Recent advancements have unveiled the intricate, heterogeneous architecture of biofilms, contradicting the earlier view of them as uniform, porous structures with consistent mass transfer properties.

View Article and Find Full Text PDF

The enzymatic depolymerization is a promising route to valorize the lignin polymers by turning the cross-linked polymers into monomers or oligomers. However, the lignin polymers cannot be effectively converted into small chemicals, as the oligomers are prone to polymerization, which is particularly challenging to monitor and thus regulate. Here, we develop a microstructured fiber Bragg grating (mFBG) sensor to probe the dynamic polymerization process of typical lignin oligomer surrogates─guaiacol (monomer) and guaiacylglycerol-β-guaiacyl ether (GBG, dimer)─catalyzed by laccase in an way.

View Article and Find Full Text PDF

Microalgae as a promising approach for wastewater treatment, has challenges in directly treating digested piggery wastewater (DPW) with high ammonia nitrogen (NH-N) concentration. To improve the performance of microalgae in DPW treatment, straw was employed as a substrate to form a straw-microalgae biofilm. The results demonstrated that the straw-microalgae biofilm achieved the highest NH-N removal rate of 193.

View Article and Find Full Text PDF

Optofluidics, which utilizes the interactions between light and fluids to realize various functions, has garnered increasing attention owing to the advantages of operational simplicity, exceptional flexibility, rapid response, etc. As one of the typical light-fluid interactions, the localized photothermal effect serving as a stimulus has been widely used for fluid manipulation. Particularly, significant progress on photothermal-driven droplet manipulation has been made.

View Article and Find Full Text PDF

The rational design of photocatalysts for improving the conversion of solar energy into hydrogen is a promising route for achieving carbon neutrality. Herein, we couple plasmonic titanium nitride (TiN) with highly crystalline potassium-doped polymeric carbon nitride (PPCN) to construct a PPCN/TiN ohmic junction. Such an ohmic junction not only broadens the absorption spectrum but also inhibits the recombination of electrons and holes.

View Article and Find Full Text PDF

Developing earth-abundant transition metal electrodes with high activity and durability is crucial for efficient and cost-effective hydrogen production. However, numerous studies in the hydrogen evolution reaction (HER) primarily focus on improving the inherent activity of catalysts, and the critical influence of gas-liquid countercurrent transport behavior is often overlooked. In this study, we introduce the concept of separate-path gas-liquid transport to alleviate mass transport losses for the HER by developing a novel hierarchical porous Ni-doped cobalt phosphide electrode (CoNi-P@Ni).

View Article and Find Full Text PDF

Developing high-performance electrodes for the all-aqueous thermally regenerative ammonia battery (ATRB) system, serving as superior substitutes for commercial carbon cloth electrodes, is anticipated to enhance performance, yet it lacks effective guidance and research. In this work, theoretical analysis is initially used to evaluate the effective conversion and adsorption capacity of nitrogen and sulfur co-doped carbon with respect to copper ion by density functional theory calculation. On the basis of this concept, the nitrogen and sulfur co-doped biomass-derived porous carbon electrode (DGC) is prepared using natural porous carbon materials and thiourea.

View Article and Find Full Text PDF

The interfacial correlation factor (), where refers to the interaction among ice, water and the substrate and refers to the ratio of the critical nucleation size to the surface topography characteristic size of the substrate, plays a crucial role in the classical theory of heterogeneous ice nucleation as it significantly impacts the energy of nucleation. Generally, a smaller value of () indicates a higher propensity for ice nucleation. The degree of structural compatibility between ice and the substrate greatly influences (), particularly on specific substrates.

View Article and Find Full Text PDF

Microalgae have been renowned as the most promising energy organism with significant potential in carbon fixation. In the large-scale cultivation of microalgae, the 3D porous substrate with higher specific surface area is favorable to microalgae adsorption and biofilm formation, whereas difficult for biofilm detachment and microalgae harvesting. To solve this contradiction, N-isopropylacrylamide, a temperature-responsive gels material, was grafted onto the inner surface of the 3D porous substrate to form temperature-controllable interface wettability.

View Article and Find Full Text PDF

Background: HIV-tuberculosis (HIV-TB) co-infection is a significant public health concern worldwide. TB delay, consisting of patient delay, diagnostic delay, treatment delay, increases the risk of adverse anti-TB treatment (ATT) outcomes. Except for individual level variables, differences in regional levels have been shown to impact the ATT outcomes.

View Article and Find Full Text PDF

The immunostimulatory effects and the involved molecular mechanisms of polysaccharides from hawthorn fruit (Crataegus spp.) have not been well understood. In this study, the chemical composition, monosaccharide composition, uronic acid content, and structural features of hawthorn fruit polysaccharides (HFP) and the two collected fractions were analyzed.

View Article and Find Full Text PDF

Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration.

View Article and Find Full Text PDF

As a crucial ecological protection area in China, the Southern hilly red soil region is characterized by uneven spatial and temporal distribution of ecological landscape elements, unpredictable and changeable interrelationships between them, diversified driving factors, and lack of comprehensive consideration of ecosystem services. In order to better understand the interaction between ecosystem services, restore regional ecology, and promote sustainable development, the evolution law and influencing mechanism of ecosystem services and their driving factors are quantitatively analyzed in the study. Based on simulations of different ecosystem services from 2000 to 2020, their spatial and temporal changes and the contributions of main drivers are quantified, their trade-offs and synergies are analyzed, and the changing rules under the influence of natural factors and socioeconomic factors are explored.

View Article and Find Full Text PDF

High-performance proton exchange membrane (PEM) is crucial for the proton exchange membrane fuel cell (PEMFC). Herein, a novel "self-enhanced" PEM is fabricated for the first time, which is composed of perfluorinated sulfonic acid (PFSA) resin and its own nanofibers as reinforcement. With this strategy, the interfacial compatibility issue of conventional fiber-reinforced membranes is fully addressed and up to 80 wt% loading of PFSA nanofibers can be incorporated.

View Article and Find Full Text PDF

The utility of electrochemical active biofilm in bioelectrochemical systems has received considerable attention for harvesting energy and chemical products. However, the slow electron transfer between biofilms and electrodes hinders the enhancement of performance and still remains challenging. Here, using FeO /L-Cys nanoparticles as precursors to induce biomineralization, a facile strategy for the construction of an effective electron transfer pathway through biofilm and biological/inorganic interface is proposed, and the underlying mechanisms are elucidated.

View Article and Find Full Text PDF

Microbial fuel cells (MFCs) are an emerging technology in renewable energy and waste treatment and the scale-up is crucial for practical applications. Undoubtedly, the analysis and comprehension of MFC operation necessitate essential information regarding the response of the current distribution to variable operating conditions, which stands as one of its significant dynamic characteristics. In this study, the dynamic responses of current distribution to external stimuli (external load, temperature, pH, and electrolyte concentration) were investigated by employing a segmented anode current collector in a liter-scale MFC.

View Article and Find Full Text PDF

In alkaline and neutral zero-gap CO electrolyzers, the carbon utilization efficiency of the electrocatalytic CO reduction to CO is less than 50% because of inherently homogeneous reactions. Utilization of the bipolar membrane (BPM) electrolyzer can effectively suppress (bi)carbonate formation and parasitic CO losses; however, an excessive concentration of H in the catalyst layer (CL) significantly hinders the activity and selectivity for CO reduction. Here, we report a microenvironment regulation strategy that controls the CL thickness and ionomer content to regulate local CO transport and the local pH within the CL.

View Article and Find Full Text PDF

Photoelectrochemical reduction of carbon dioxide (CO) is a promising avenue to realize resourceful utilization of carbon dioxide and mitigate the energy shortage. Herein, a photocatalytic fuel cell with a bubbling fluidized cathode (PFC-BFC) is proposed to increase the performance of the photocatalytic CO reduction reaction (CORR). Titanium carbide (TiC) is first used as a fluidized cathode catalyst with the dual features of superior capacitance and high CORR catalytic activity.

View Article and Find Full Text PDF

Flexible control of droplet transportation is crucial in various applications but is constrained by liquid-solid friction. The development of biomimetic lubricant-impregnated slippery surfaces provides a new solution for flexible manipulation of droplet transportation. Herein, a light strategy is reported for flexibly controlling droplet transportation on photosensitive lubricant-impregnated slippery surfaces.

View Article and Find Full Text PDF

Flexible and precise manipulation of droplet transport is of significance for scientific and engineering applications, but real-time and on-demand droplet manipulation remains a challenge. Herein, we report a strategy using light for the outstanding manipulation of binary droplet motion on a high-energy surface and reveal the underlying mechanism. Upon irradiation to a substrate by a focused light beam, the substrate can provide a localized heating source photothermal conversion, and a binary droplet can be flexibly transported on a high-energy surface with free contact-line pinning, exhibiting light-propelled droplet transport.

View Article and Find Full Text PDF

As a reliable energy-supply platform for wearable electronics, biosupercapacitors combine the characteristics of biofuel cells and supercapacitors to harvest and store the energy from human's sweat. However, the bulky preparation process and deep embedding of enzyme active sites in bioelectrodes usually limit the energy-harvesting process, retarding the practical power-supply sceneries especially during the complicated in vivo motion. Herein, a MXene/single-walled carbon nanotube/lactate oxidase hierarchical structure as the dual-functional bioanode is designed, which can not only provide a superior 3D catalytic microenvironment for enzyme accommodation to harvest energy from sweat, but also offers sufficient capacitance to store energy via the electrical double-layer capacitor.

View Article and Find Full Text PDF

Macrophages play a central role in immunological responses to metallic species associated with the localized corrosion of metallic implants, and mediating in peri-implant inflammations. Herein, the pathways of localized corrosion-macrophage interactions were systematically investigated on 316L stainless steel (SS) implant metals. Electrochemical monitoring under macrophage-mediated inflammatory conditions showed a decreased pitting corrosion resistance of 316L SSs in the presence of RAW264.

View Article and Find Full Text PDF

Biological treatment that utilizes microalgae technology has demonstrated outstanding efficacy in the wastewater purification and nutrients recovery. However, the high turbidity of the digested piggery wastewater (DPW) leads to serious light attenuation and the culture mode of suspended microalgae results in a huge landing area. Thus, to overcome light attenuation in DPW, a non-immersed titled zigzag microalgae biofilm was constructed by attaching it onto a porous cotton cloth.

View Article and Find Full Text PDF