Publications by authors named "Liao Bo-han"

The impacts of straw removal on rice Cd absorption, behaviour of Cd and microbial community in rhizosphere soil were investigated in paddy fields over two consecutive seasons. The results of the experiments in two fields revealed that straw removal promoted the transformation of soil Cd from acid-extractable and oxidisable fraction to residual fraction and reduced soil DTPA-Cd content with the reduction in DOC and Cd ions in soil porewater, thereby decreasing Cd content in rice. Specifically, the Cd content in brown rice was below 0.

View Article and Find Full Text PDF

Sweet sorghum has a large biomass and strong cadmium (Cd) absorption capacity, which has the potential for phytoremediation of Cd-contaminated soil. In order to study the Cd phytoremediation effect of sweet sorghum assisted with citric acid on the typical parent materials in southern China, a field experiment was carried out in two typical parent material farmland areas (neutral purple mud field and jute sand mud field) with Cd pollution in Hunan Province. The results showed that:① Citric acid had no inhibitory effect on the growth of sweet sorghum.

View Article and Find Full Text PDF

In this study, a field experiment was conducted to examine the effects of the application of irrigation water containing Zn at the key growth period (booting stage and filling stage) on exchangeable Cd content in the soil, Cd concentration in pore water, and Cd uptake and transport in rice in a Cd-contaminated paddy field in Liuyang City, Hunan Province. The results indicated that: ① the application of irrigation water containing Zn during the key growth period could inhibit the releasing process of exchangeable Cd from the soil into pore water. Compared with that in the control, the content of exchangeable Cd in soil was slightly changed, but the concentration of Cd in soil pore water at the mature stage was significantly reduced by 16.

View Article and Find Full Text PDF

A rice pot experiment was conducted to identify the effect of silica fertilizer prepared from husk ash on the soil bioavailability of cadmium (Cd) and arsenic (As), enzyme activities, microbial community structure, and heavy metal content in brown rice at different growth stages. The results showed that the application of 0.1%-1.

View Article and Find Full Text PDF

Woody plants possess great potential for phytoremediation of heavy metal-contaminated soil. A pot trial was conducted to study growth, physiological response, and Cd and Pb uptake and distribution in black locust (Robinia pseudoacacia L.), as well as the rhizosphere bacterial communities in Cd and Pb co-contaminated soil.

View Article and Find Full Text PDF

Phytoremediation is the direct use of living green plants and it is an effective, inexpensive, non-invasive, and environmentally friendly technique used to transfer or stabilize all the toxic metals and environmental pollutants in polluted soil or ground water. To study the effect of tartaric acid, gibberellin, and tartaric acid coupled with gibberellin on rape-kenaf or rape-sweet sorghum rotation, a field experiment was carried out on a farmland combined polluted with Cd and Pb in eastern Hunan Province, China. The results showed that these two rotation systems coupled with superposition measure has potential to enhance yield and biomass of rape (Brassica napus L.

View Article and Find Full Text PDF

A field experiment was conducted in a lightly Cd-contaminated rice field in Ningxiang City, Hunan Province, to study the effects of straw removal measures on the soil Cd bioavailability and rice Cd accumulation. The results showed that:① two consecutive seasons of straw removal measures (T1-T4 treatments) effectively increased soil pH by 0.04-0.

View Article and Find Full Text PDF

Fe-Mn oxide-modified biochar (BC-FM) was used to remediate Cd-contaminated soil and mitigate Cd accumulation in rice. The roles of Fe and Mn in soil Cd immobilization and in controlling Cd uptake by rice were investigated via X-ray photoelectron spectroscopy (XPS) characterization and chemical analysis. Fe and Mn loaded on BC-FM increased the removal efficiencies of CaCl extractable Cd in soil and Cd in pore water compared to those in only biochar (BC)-treated soil, with maximum removal rates at 67.

View Article and Find Full Text PDF

A pot experiment was conducted to investigate the effects of citric acid application and mowing frequency on the remediation of cadmium (Cd) contaminated soil by napier grass ( Schum). Three levels of citric acid were divided into three applications of 1.25, 2.

View Article and Find Full Text PDF

This study prepared iron-manganese oxide-modified biochar (FM-BC) by impregnating rice straw biochar (BC) with a mixed solution of ferric nitrate and potassium permanganate. The effects of pH, FM-BC dosage, interference of coexisting ions, adsorption time, incipient Pb(II) concentration, and temperature on the adsorption of Pb(II) by FM-BC were investigated. Moreover, the Pb(II) adsorption mechanism of FM-BC was analyzed using a series of characterization techniques.

View Article and Find Full Text PDF

Phosphorus (P) is an essential nutrient element for crop growth. The effects of P surplus or deficit on Cd absorption and transport in rice in Cd-polluted farmland is not clear. The effects of P deficiency and P sufficiency on Cd uptake, transport, and accumulation in rice under Cd stress were investigated by applying different levels of phosphorus (NaHPO) in a hydroponic experiment.

View Article and Find Full Text PDF

The practical application of in situ remediation techniques requires an understanding of the dynamic changes in soil enzyme activity as indicators of soil fertility and health. Experiments were carried out in paddy soils co-contaminated with cadmium (Cd) and arsenic (As) at low (L) and high (H) levels. A calcium and iron (CaFe)-based amendment (limestone + iron powder + silicon fertilizer + calcium‑magnesium-phosphate fertilizer) was applied to the soil at concentrations of 0, 450, and 900 g·m (labeled CK, T1, and T2, respectively), and sampling was conducted at the tillering (TS), booting (BS), filling (FS), and mature (MS) stages.

View Article and Find Full Text PDF

Metal oxide-modified biochar showed excellent adsorption performance in wastewater treatment. Iron nitrate and potassium permanganate were oxidative modifiers through which oxygen-containing groups and iron-manganese oxides could be introduced into biochar. In this study, iron-manganese (Fe-Mn) oxide-modified biochar (BC-FM) was synthesized using rice straw biochar, and the adsorption process, removal effect, and the mechanism of cadmium (Cd) adsorption on BC-FM in wastewater treatment were explored through batch adsorption experiments and characterization (SEM, BET, FTIR, XRD, and XPS).

View Article and Find Full Text PDF

In situ remediation technology applied aims to not only decrease cadmium (Cd) and arsenic (As) uptake by rice but also improve soil health and rice quality in contaminated paddy soils. Here the effects of a combined amendment, consisting of limestone, iron powder, silicon fertilizer, and calcium-magnesium-phosphate fertilizer, with three application rates (0, 450, and 900 g m) on soil health, rice root system, and brown rice quality were compared in moderately versus highly Cd and As co-contaminated paddy fields. After the amendment application, soil pH, cation exchange capacity, four kinds of soil enzyme activities increased (sucrase, urease, acid phosphatase, and catalase), and concentrations of leached Cd/As decreased, as measured by the DTPA (diethylene triamine pentaacetic acid) and TCLP (toxicity characteristic leaching procedure).

View Article and Find Full Text PDF

A field experiment was conducted in moderately and severely Cd contaminated paddy fields in Beishan Town, Changsha City, Hunan Province. This study examined the effects of LS amendment (limestone+sepiolite), in combination with soil application and foliar spraying of Zn fertilizer, on Cd uptake in early and late rice plants. The results showed that: ① the application of LS (2250 kg·hm and 4500 kg·hm) significantly increased pH and CEC values in paddy soil during the early and late rice seasons, but the addition of Zn fertilizer (90 kg/hm) to soil and through foliar spraying (0.

View Article and Find Full Text PDF

Rice as a paddy field crops, iron-containing materials application could induce its iron plaque formation, thereby affecting cadmium (Cd) transportation in the rhizosphere and its uptake in root. In this study, a hydroponic experiment was conducted to investigate the effects of three exogenous iron materials, namely nano-FeO-modified biochar (BC-Fe), chelated iron (EDTA-Fe), and ferrous sulfate (FeSO), on the iron plaque formation on the surface of rice root, and to investigate the effects of formed iron plaque on the absorption, migration, and transportation of Cd and Fe in rice plant. The results showed that yellow-brown and brown iron plaque was formed on surface cells of the Fe-treated rice root, and some black particles were embedded in the iron plaque formed by BC-Fe.

View Article and Find Full Text PDF

Arsenic (As)-contaminated paddy soil could result in elevated levels of As in rice plants and sequentially harm human health. The FeO-modified biochar (NBC-Fe) prepared by the coprecipitation method was applied in a pot experiment to investigate its effect on mobility and bioavailability of As in soil and to reduce As accumulation in rice tissues (brown rice, husks, spikelets, leaves, stems, and roots). Compared with non-application (CK), application of NBC-Fe significantly increased the cation exchange capacity (CEC), decreased As availability, and raised the As concentration of crystalline hydrous oxide-bound fraction in the soil.

View Article and Find Full Text PDF

A pot experiment was conducted to identify the effect of a tribasic amendment (limestone+diatomite+ferric sulfate, LDF) on chemical fractions of Cd and As in paddy soils and their accumulation in brown rice. LDF was set to seven levels (0, 0.5, 1.

View Article and Find Full Text PDF

The absorption and accumulation of As at different stages of rice growth are significantly different. To study the key growth stages of As accumulation in brown rice and to determine the contribution of As accumulation at different growth stages to As contribution in brown rice, a rice hydroponics experiment was carried out by adding external As during the different rice growth stages: tillering stage (30 d), jointing stage (16 d), booting stage (13 d), filling stage (17 d), dough stage (15 d), maturity stage (13 d), and full growth period (104 d). The results showed that: ① As stress at different growth stages had a significant effect on the biomass of rice plants.

View Article and Find Full Text PDF

A field experiment involving eight treatments with water management combined with leaf spraying silicon fertilizer was conducted in a paddy field heavily contaminated with Cd (2.83 mg·kg) to study the effects of these treatments on rice growth and Cd accumulation in different rice tissues. The results showed that:① the treatments had no significant effects on rice plant height or number of tillers, but increased the biomass of brown rice by 1.

View Article and Find Full Text PDF

Pb accumulation in rice varies significantly at different growth stages. In this study, a hydroponic experiment was conducted to study the effects of exogenous Pb stress on Pb accumulation and transportation in rice plants and determine the key rice growth stages of Pb accumulation and their contribution to the Pb content in brown rice. For the hydroponic experiment, 0.

View Article and Find Full Text PDF

A pot experiment was conducted to evaluate the effects of combined application of cadmium (Cd)-resistant bacteria (J) and calcium carbonate + sepiolite (G) on both Cd bioavailability in contaminated paddy soil and on Cd accumulation in rice plants. Adding the mixture (J + G) to the soils significantly increased soil pH, decreased extractable Cd contents, and increased Fe/Mn-oxide Cd and organic-bound Cd contents. The applying of J + G, J and G decreased Cd contents in various rice tissues (roots, stems and leaves, husks, and brown rice grains) to different degrees.

View Article and Find Full Text PDF

The use of Napier grass to remediate heavy metal-contaminated soil is a new phytoremediation technique. The objective of this study was to evaluate the ability of Napier grass (Pennisetum purpureum Schumach.) to remediate Cd- and Zn-contaminated cultivated soil under nonmowing and mowing and the possibility of safe utilization of the stem and leaf after detoxification by liquid extraction.

View Article and Find Full Text PDF
Article Synopsis
  • - Nano-FeO-modified biochar (BC-Fe) was created from rice husk biochar, and its effects on cadmium (Cd) levels in soil and rice plants were tested using various application rates in a pot experiment.
  • - Applying BC-Fe significantly decreased cadmium concentrations in brown rice by up to 48.9% and increased soil cation exchange capacity, leading to reduced soil Cd availability.
  • - However, higher BC-Fe rates (0.8-1.6%) risked promoting Cd transport to the leaves, even as it helped form iron plaques that mitigated some Cd toxicity to rice roots, showing a limited effectiveness based on dosage.
View Article and Find Full Text PDF

By conducting field positioning experiments, we studied the development trend of Cd pollution in a typical paddy system. The samples of atmospheric deposition and irrigation water were collected monthly from November 2015 to November 2018 during which fertilizer, soil, and rice samples were also collected. The Cd concentration in the samples was monitored and analyzed to conduct research on the balance between Cd inputs and outputs in a typical paddy system in Hunan Province.

View Article and Find Full Text PDF