Identifying the core parameters affecting membrane fouling and analyzing fouling layer characteristics are crucial for membrane fouling mitigation of anaerobic membrane bioreactors (AnMBRs). This study investigated the influence of various operating parameters on membrane fouling and the characteristics of different fouling layers. The ratio of flux to specific gas demand per unit of membrane area (SGD) was proposed as a key parameter for membrane fouling control and was applicable under various flux, SGD, and sludge concentration conditions.
View Article and Find Full Text PDFExtracellular polymeric substances (EPS) participate in the removal of organic micropollutants (OMPs), but the primary pathways of removal and detailed mechanisms remain elusive. We evaluated the effect of EPS on removal for 16 distinct chemical classes of OMPs during anaerobic digestion (AD). The results showed that hydrophobic OMPs (HBOMPs) could not be removed by EPS, while hydrophilic OMPs (HLOMPs) were amenable to removal via adsorption and biotransformation of EPS.
View Article and Find Full Text PDFBiofouling limits applications of membrane technology in wastewater treatment, but dosing additives to membrane tanks is an effective method to alleviate biofouling. In this study, biochar derived from corncob and pyrolyzed at 300, 500, and 700°C was dosed to determine the underlying anti-biofouling mechanism. The effects of the biochar on the membrane properties and foulant behavior were systematically investigated.
View Article and Find Full Text PDFBiotransformation is one of the dominant processes to remove organic micropollutants (OMPs) in wastewater treatment. However, studies on the role of molecular structure in determining the biotransformation rates of OMPs are limited. We evaluated the biotransformation of 14 OMPs belonging to different chemical classes under aerobic and anaerobic conditions, and then explored the quantitative structure-biotransformation relationships (QSBRs) of the OMPs based on biotransformation rates using valid molecular structure descriptors (electrical and physicochemical parameters).
View Article and Find Full Text PDFThe removal of emerging organic micropollutants (OMPs) in anaerobic membrane bioreactors (AnMBRs) has garnered considerable attention owing to the rapid development of AnMBR technology and the increased environmental risk caused by OMP discharge. We investigated the removal efficiency of 22 typical OMPs from sewage being treated in an AnMBR, and implemented and evaluated an upgrading strategy by adding biochar. The average removal efficiency of OMPs was only 76.
View Article and Find Full Text PDFIntegrating anaerobic treatment with partial nitritation (PN)/anammox is a promising technology to achieve energy-efficient wastewater treatment, while partial nitritation of the mainstream anaerobic effluent (Aneff) was rarely reported. A PN reactor fed with low-strength Aneff was employed in this study to investigate the performance and technology bottleneck of this process. When operated at low dissolved oxygen (DO) concentration (0.
View Article and Find Full Text PDFA partial nitritation/anammox system treating the effluent of an anaerobic membrane bioreactor was investigated in this study with emphases on the nitrogen conversion and microbial dynamics along the up-flow anaerobic sludge blanket. An average total nitrogen concentration of 12.3 mg/L was achieved in effluent, which resulted in a total nitrogen removal efficiency of 75.
View Article and Find Full Text PDFAs a biomass polymer, alginate-based material has drawn considerable attention and been applied in many fields. However, the research on alginate-based Schiff Base metal complex is scarce. Herein, a novel alginate-based Schiff Base Cu (II) complex was prepared via oxidation and imidization of alginate by periodate and organic amine, respectively.
View Article and Find Full Text PDFBiomass aerogel is a promising catalyst and has attracted extensive attention. However, most of the biomass aerogels are fragile, which limits their practical application. Herein, we significantly enhance the mechanical property of biomass aerogel catalysts by 30 times through incorporating graphene oxide into polyacrylamide and Cu-cross-linked alginate formed supper-strong double network aerogels.
View Article and Find Full Text PDF