Publications by authors named "Lianwen Sun"

Background: Osteocytes are crucial for detecting mechanical stimuli and translating them into biochemical responses within the bone. The primary cilium, a cellular 'antenna,' plays a vital role in this process. However, there is a lack of direct correlation between cilium length changes and osteocyte mechanosensitivity changes.

View Article and Find Full Text PDF

Some previous researches have demonstrated that appropriate mechanical stimulation can enhance bone formation. However, most studies have employed the strain energy density (SED) method for predicting bone remodeling, with only a few considering the potential impact of wall fluid shear stress (FSS) on this process. To bridge this gap, the current study compared the prediction of bone formation and resorption via SED and wall FSS by using fluid-solid coupling numerical simulation.

View Article and Find Full Text PDF

Trabeculae bone undergoes directional growth along the applied force under physiological loading. The growth of bone structure relies on the coordinated interplay among osteocytes, osteoblasts, and osteoclasts. Under normal circumstances, bone remodeling maintains a state of equilibrium.

View Article and Find Full Text PDF

Long-term spaceflight can result in bone loss and osteoblast dysfunction. Frizzled-9 (Fzd9) is a Wnt receptor of the frizzled family that is vital for osteoblast differentiation and bone formation. In the present study, we elucidated whether Fzd9 plays a role in osteoblast dysfunction induced by simulated microgravity (SMG).

View Article and Find Full Text PDF

Bone loss occurs in astronauts during long-term space flight, but the mechanisms are still unclear. We previously showed that advanced glycation end products (AGEs) were involved in microgravity-induced osteoporosis. Here, we investigated the improvement effects of blocking AGEs formation on microgravity-induced bone loss by using the AGEs formation inhibitor, irbesartan.

View Article and Find Full Text PDF

Osteocytes play an important role in mechanosensation and conduction in bone tissue, and the change of mechanical environment can affect the sensitivity of osteocytes to external stimulation. The structure of osteocytes will be changed when they are subjected to vibrations, which influence the mechanosensitivity of osteocytes and alter the regulation of bone remodeling process. As an important mechanotransduction structure in osteocytes, the membrane skeleton greatly affects the mechanosensation and conduction of osteocytes.

View Article and Find Full Text PDF

Decades of spaceflight studies have provided abundant evidence that individual cells in vitro are capable of sensing space microgravity and responding with cellular changes both structurally and functionally. However, how microgravity is perceived, transmitted, and converted to biochemical signals by single cells remains unrevealed. Here in this review, over 40 cellular biology studies of real space fights were summarized.

View Article and Find Full Text PDF

The molecular mechanisms of skeletal muscle atrophy under extended periods of either disuse or microgravity are not yet fully understood. The transition of Homer isoforms may play a key role during neuromuscular junction (NMJ) imbalance/plasticity in space. Here, we investigated the expression pattern of Homer short and long isoforms by gene array, qPCR, biochemistry, and laser confocal microscopy in skeletal muscles from male C57Bl/N6 mice ( = 5) housed for 30 days in space (Bion-flight = BF) compared to muscles from Bion biosatellite on the ground-housed animals (Bion ground = BG) and from standard cage housed animals (Flight control = FC).

View Article and Find Full Text PDF

Osteocytes are extremely sensitive to mechanical loading and govern bone remodeling process. Advanced glycation end products (AGEs) have the capacity to induce osteocyte apoptosis. In order to investigate the effects of AGEs on the mechanosensitivity of osteocytes, the osteocytic-like cells (MLO-Y4) were treated with low (50 μg/ml) and high (400 μg/ml) concentrations of AGEs for 1day and exposed to 15 dyne/cm of fluid shear stress.

View Article and Find Full Text PDF

Osteocytes, as the mechano-sensors in bone, are always subjected to fluid shear stress (FSS) from the surrounding matrix. Quantification of FSS-induced cellular deformation is significant for clarifying the "perceive and transmit" process of cellular mechanotransduction. In this research, a label-free displacement and strain mapping method based on digital holographic microscopy (DHM) and digital image correlation (DIC) is introduced.

View Article and Find Full Text PDF

We present sensing time-lapse morphogenesis of living bone cells under micro-fluidic shear stress (FSS) by digital holographic (DH) microscopy. To remove the effect of aberrations on quantitative measurements, we propose a numerical and automatic method to compensate for aberrations based on a convolutional neural network (CNN). For the first time, the aberration compensation issue is considered as a regression task where optimal coefficients for constructing the phase aberration map act as responses corresponding to the input aberrated phase image.

View Article and Find Full Text PDF

Primary cilia are responsible for sensing mechanical loading in osteocytes. However, the underlying working mechanism of cilia remains elusive. An osteocyte model is necessary to reveal the role of cilia.

View Article and Find Full Text PDF

It is hard to explain the decrease in mechanosensitivity of osteocytes under microgravity. Primary cilia are essential mechanosensor for osteocytes. The cilia become shorter under the simulated microgravity (SMG) environment.

View Article and Find Full Text PDF

Background: Spinal muscular atrophy (SMA) is caused by genetic defects in the survival motor neuron 1 (SMN1) gene that lead to SMN deficiency. Different SMN-restoring therapies substantially prolong survival and function in transgenic mice of SMA. However, these therapies do not entirely prevent muscle atrophy and restore function completely.

View Article and Find Full Text PDF

Vibration at high frequency has been demonstrated to be anabolic for bone and embedded osteocytes. The response of osteocytes to vibration is frequency-dependent, but the mechanism remains unclear. Our previous computational study using an osteocyte finite element model has predicted a resonance effect involving in the frequency-dependent response of osteocytes to vibration.

View Article and Find Full Text PDF

Digital holographic microscopy (DHM) as a label-free quantitative imaging tool has been widely used to investigate the morphology of living cells dynamically. In the off-axis DHM, the spatial filtering in the frequency spectrum of the hologram is vital to the quality of the reconstructed images. In this paper, we propose an adaptive spatial filtering approach based on convolutional neural networks (CNN) to automatically extracts the optimal shape of frequency components.

View Article and Find Full Text PDF

The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading) to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading.

View Article and Find Full Text PDF

Cytoskeletons such as F-actin have different distributions in different cell parts and they are the cause of different degrees of cell collapse when the F-actin is disrupted. It is challenging to use conventional methods such as fluorescence microscopy and atomic force microscopy to conduct real-time and three-dimensional observations on the dynamic processes at different cell parts due to the slow measuring speed and the need for live-cell staining. In this study, the morphological variations of different bone cell parts caused by F-actin disruption are dynamically measured by using digital holographic microscopy (DHM).

View Article and Find Full Text PDF

The spectrin is first identified as the main component of erythrocyte membrane skeleton. It is getting growing attention since being found in multiple nonerythroid cells, providing complex mechanical properties and signal interface under the cell membrane. Recent genomics studies have revealed that the spectrin is highly relevant to bone disorders.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Although previous evidence shows that the accumulation of AGEs in bone matrix may impose significant effects on bone cells, the effect of matrix AGEs on bone formation in vivo is still poorly understood. To address this issue, this study used a unique rat model with autograft implant to investigate the in vivo response of bone formation to matrix AGEs.

View Article and Find Full Text PDF

Vibration, especially at low magnitude and high frequency (LMHF), was demonstrated to be anabolic for bone, but how the LMHF vibration signal is perceived by osteocytes is not fully studied. On the other hand, the mechanotransduction of osteocytes under shear stress has been scientists' primary focus for years. Due to the small strain caused by low-magnitude vibration, whether the previous explanation for shear stress will still work for LMHF vibration is unknown.

View Article and Find Full Text PDF

Space flight has been shown to induce bone loss and muscle atrophy, which could initiate the degeneration of articular cartilage. Countermeasures to prevent bone loss and muscle atrophy have been explored, but few spaceflight or ground-based studies have focused on the effects on cartilage degeneration. In this study, we investigated the effects of exercise on articular cartilage deterioration in tail-suspended rats.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Previous studies have shown controversial results regarding the role of in situ AGEs accumulation in osteoclastic resorption. To address this issue, this study cultured human osteoclast cells directly on human cadaveric bone slices from different age groups (young and elderly) to warrant its relevance to in vivo conditions.

View Article and Find Full Text PDF

As their name suggests, conductive nanomaterials (CNMs) are a type of functional materials, which not only have a high surface area to volume ratio, but also possess excellent conductivity. Thus far, CNMs have been widely used in biomedical applications, such as effectively transferring electrical signals, and providing a large surface area to adsorb proteins and induce cellular functions. Recent works propose further applications of CNMs in biosensors, tissue engineering, neural probes, and drug delivery.

View Article and Find Full Text PDF

Due to their unique size and properties, nanomaterials have numerous applications, which range from electronics, cosmetics, household appliances, energy storage, and semiconductor devices, to medical products such as biological sensors, drug carriers, bioprobes, and implants. Many of the promising properties of nanomaterials arise from their large surface to volume ratio and, therefore, nanobiomaterials that are implantable have a large contact area with the human body. Before, therefore, we can fully exploit nanomaterials, in medicine and bioengineering; it is necessary to understand how they can affect the human body.

View Article and Find Full Text PDF