As an essential intrinsic component of photosystem II (PSII) in all oxygenic photosynthetic organisms, heme-bridged heterodimer cytochrome b559 (Cyt b559) plays critical roles in the protection and assembly of PSII. However, the underlying mechanisms of Cyt b559 assembly are largely unclear. Here, we characterized the Arabidopsis (Arabidopsis thaliana) rph1 (resistance to Phytophthora1) mutant, which was previously shown to be susceptible to the oomycete pathogen Phytophthora brassicae.
View Article and Find Full Text PDFIn chloroplasts, insertion of proteins with multiple transmembrane domains (TMDs) into thylakoid membranes usually occurs in a co-translational manner. Here, we have characterized a thylakoid protein designated FPB1 (Facilitator of PsbB biogenesis1) which together with a previously reported factor PAM68 (Photosynthesis Affected Mutant68) is involved in assisting the biogenesis of CP47, a subunit of the Photosystem II (PSII) core. Analysis by ribosome profiling reveals increased ribosome stalling when the last TMD segment of CP47 emerges from the ribosomal tunnel in fpb1 and pam68.
View Article and Find Full Text PDFThiol/disulfide-based redox regulation in plant chloroplasts is essential for controlling the activity of target proteins in response to light signals. One of the examples of such a role in chloroplasts is the activity of the chloroplast ATP synthase (CFCF), which is regulated by the redox state of the CFγ subunit and involves two cysteines in its central domain. To investigate the mechanism underlying the oxidation of CFγ and other chloroplast redox-regulated enzymes in the dark, we characterized the Arabidopsis mutant, which was isolated based on its altered NPQ (non-photochemical quenching) induction upon illumination.
View Article and Find Full Text PDFCyanobacterial NdhM, an oxygenic photosynthesis-specific NDH-1 subunit, has been found to be essential for the formation of a large complex of NDH-1 (NDH-1L). The cryo-electron microscopic (cryo-EM) structure of NdhM from showed that the N-terminus of NdhM contains three β-sheets, while two α-helixes are present in the middle and C-terminal part of NdhM. Here, we obtained a mutant of the unicellular cyanobacterium 6803 expressing a C-terminal truncated NdhM subunit designated NdhMΔC.
View Article and Find Full Text PDFChloroplast ribulose-5-phosphate-3-epimerase (RPE) is a critical enzyme involved in the Calvin-Benson cycle and oxidative pentose phosphate pathways in higher plants. Three Arabidopsis mutants with reduced level of RPE were identified through their high NPQ (nonphotochemical quenching) phenotype upon illumination, and no significant difference of plant size was found between these mutants and WT (wild type) plants under growth chamber conditions. A decrease in RPE expression to a certain extent leads to a decrease in CO fixation, and .
View Article and Find Full Text PDFChloroplast thylakoid protein rubredoxin 1 (RBD1) in Chlamydomonas and its cyanobacterial homolog RubA contain a rubredoxin domain. These proteins have been proposed to participate in the assembly of photosystem II (PSII) at early stages. However, the effects of inactivation of RBD1 on PSII assembly in higher plants are largely unclear.
View Article and Find Full Text PDFAlthough numerous studies have been carried out on chloroplast development and biogenesis, the underlying regulatory mechanisms are still largely elusive. Here, we characterized a chloroplast stromal protein Chloroplast Development and Biogenesis1 (CDB1). The knockout mutant exhibits a seedling-lethal and ivory leaf phenotype.
View Article and Find Full Text PDFAtp11p and Atp12p are members of two chaperone families essential for assembly of the mitochondrial ATP synthase in and . However, the role of their homologs in higher plants is unclear with regard to the assembly of both chloroplast ATP synthase (cpATPase) and mitochondrial ATP synthase (mtATPase). Here, we show that loss of either Atp11 or Atp12 is lethal in Arabidopsis.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
June 2020
Alkali-salinity exerts severe osmotic, ionic, and high-pH stresses to plants. To understand the alkali-salinity responsive mechanisms underlying photosynthetic modulation and reactive oxygen species (ROS) homeostasis, physiological and diverse quantitative proteomics analyses of alkaligrass (Puccinellia tenuiflora) under NaCO stress were conducted. In addition, Western blot, real-time PCR, and transgenic techniques were applied to validate the proteomic results and test the functions of the NaCO-responsive proteins.
View Article and Find Full Text PDFAs a fascinating and complicated nanomotor, chloroplast ATP synthase comprises nine subunits encoded by both the nuclear and plastid genomes. Because of its uneven subunit stoichiometry, biogenesis of ATP synthase and expression of plastid-encoded ATP synthase genes requires assistance by nucleus-encoded factors involved in transcriptional, post-transcriptional, and translational steps. In this study, we report a P-class pentatricopeptide repeat (PPR) protein BFA2 (Biogenesis Factor required for ATP synthase 2) that is essential for accumulation of the dicistronic transcript in Arabidopsis chloroplasts.
View Article and Find Full Text PDFSheepgrass [ (Trin.) Tzvel] is a valuable forage plant highly significant to the grassland productivity of Euro-Asia steppes. Growth of above-ground tissues of is the major component contributing to the grass yield.
View Article and Find Full Text PDFThe reaction center (RC) of photosystem II (PSII), which is composed of D1, D2, PsbI, and cytochrome subunits, forms at an early stage of PSII biogenesis. However, it is largely unclear how these components assemble to form a functional unit. In this work, we show that synthesis of the PSII core proteins D1/D2 and formation of the PSII RC is blocked specifically in the absence of ONE-HELIX PROTEIN1 (OHP1) and OHP2 proteins in Arabidopsis (), indicating that OHP1 and OHP2 are essential for the formation of the PSII RC.
View Article and Find Full Text PDFF-type ATP synthases produce nearly all of the ATP found in cells. The catalytic module F commonly comprises an αβ hexamer surrounding a γ/ε stalk. However, it is unclear how these subunits assemble to form a catalytic motor.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2018
Photosystem II (PSII), a multisubunit protein complex of the photosynthetic electron transport chain, functions as a water-plastoquinone oxidoreductase, which is vital to the initiation of photosynthesis and electron transport. Although the structure, composition, and function of PSII are well understood, the mechanism of PSII biogenesis remains largely elusive. Here, we identified a nuclear-encoded pentatricopeptide repeat (PPR) protein LOW PHOTOSYNTHETIC EFFICIENCY 1 (LPE1; encoded by At3g46610) in , which plays a crucial role in PSII biogenesis.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
March 2017
The contradiction between the increasing population and the decrease of tillable land areas is becoming more and more serious in our country. Food security is an important guarantee for sustainable development of our national economy. Photosynthesis is the basis for crop yield.
View Article and Find Full Text PDFUsing a genetic approach, we have identified and characterized a novel protein, named Msf1 (Maintenance factor for photosystem I), that is required for the maintenance of specific components of the photosynthetic apparatus in the green alga Msf1 belongs to the superfamily of light-harvesting complex proteins with three transmembrane domains and consensus chlorophyll-binding sites. Loss of Msf1 leads to reduced accumulation of photosystem I and chlorophyll-binding proteins/complexes. Msf1is a component of a thylakoid complex containing key enzymes of the tetrapyrrole biosynthetic pathway, thus revealing a possible link between Msf1 and chlorophyll biosynthesis.
View Article and Find Full Text PDFJ Integr Plant Biol
December 2016
We have identified hpm91, a Chlamydomonas mutant lacking Proton Gradient Regulation5 (PGR5) capable of producing hydrogen (H ) for 25 days with more than 30-fold yield increase compared to wild type. Thus, hpm91 displays a higher capacity of H production than a previously characterized pgr5 mutant. Physiological and biochemical characterization of hpm91 reveal that the prolonged H production is due to enhanced stability of PSII, which correlates with increased reactive oxygen species (ROS) scavenging capacity during sulfur deprivation.
View Article and Find Full Text PDFIn vascular plants, the chloroplast NADH dehydrogenase-like (NDH) complex, a homolog of respiratory NADH:quinone oxidoreductase (Complex I), mediates plastoquinone reduction using ferredoxin as an electron donor in cyclic electron transport around PSI in the thylakoid membrane. In angiosperms, chloroplast NDH is composed of five subcomplexes and forms a supercomplex with PSI. The modular assembly of stroma-protruded subcomplex A, which corresponds to the Q module of Complex I, was recently reported.
View Article and Find Full Text PDFThe cyanobacterial NAD(P)H dehydrogenase (NDH-1) complexes play crucial roles in variety of bioenergetic reactions. However, the regulative mechanism of NDH-1 under stressed conditions is still unclear. In this study, we detected that the NDH-1 activity is partially impaired, but the accumulation of NDH-1 complexes was little affected in the NdhV deleted mutant (ΔndhV) at low light in cyanobacterium Synechocystis sp.
View Article and Find Full Text PDFThylakoid membrane-localized chloroplast ATP synthases use the proton motive force generated by photosynthetic electron transport to produce ATP from ADP. Although it is well known that the chloroplast ATP synthase is composed of more than 20 proteins with α3β3γ1ε1δ1I1II1III14IV1 stoichiometry, its biogenesis process is currently unclear. To unravel the molecular mechanisms underlying the biogenesis of chloroplast ATP synthase, we performed extensive screening for isolating ATP synthase mutants in Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFDuring photosynthesis, photosynthetic electron transport generates a proton motive force (pmf) across the thylakoid membrane, which is used for ATP biosynthesis via ATP synthase in the chloroplast. The pmf is composed of an electric potential (ΔΨ) and an osmotic component (ΔpH). Partitioning between these components in chloroplasts is strictly regulated in response to fluctuating environments.
View Article and Find Full Text PDFThe chloroplast NADH dehydrogenase-like (NDH) complex is involved in cyclic electron transport around photosystem I (PSI) and chlororespiration. Although the NDH complex was discovered more than 20 years ago, its low abundance and fragile nature render it recalcitrant to analysis, and it is thought that some of its subunits remain to be identified. Here, we identified the NDH subunit NdhV that readily disassociates from the NDH complex in the presence of detergent, salt and alkaline solutions.
View Article and Find Full Text PDF