J Colloid Interface Sci
April 2013
A stable drug carrier has been prepared by covalently coating magnetic nanoparticles (MNPs) with PEO-PPO-PEO block copolymer Pluronic P85. The particles were characterized by TEM, XRD, DLS, VSM, FTIR, and TGA. A typical product has a 15 nm magnetite core and a 100 nm hydrodynamic diameter with a narrow size distribution and is superparamagnetic with large saturation magnetization (57.
View Article and Find Full Text PDFInteraction between PEO-PPO-PEO copolymers and a hexapeptide, growth hormone releasing peptide-6 (GHRP-6), was investigated by NMR to study the potential use of the copolymers in peptide drug delivery. (1)H NMR and nuclear Overhauser effect spectroscopy (NOESY) measurements determined that PO methyl protons interacted with methyl protons of the Ala moiety, aromatic protons of the Trp moiety, and some of the Phe aromatic protons. The Lys moiety and part of the Phe moiety entered the hydrophilic EO environment via hydrogen bonding.
View Article and Find Full Text PDFThe influence of pH value on gold nanoparticle production in the presence of Pluronic stabilizers is systematically investigated. The reactions are studied as a function of pH and at fixed concentrations of the two reactants, HAuCl(4) and P123 block copolymer. Results indicate that the reaction pathway during the nanoparticle formation can be controlled by varying pH.
View Article and Find Full Text PDFIn order to investigate the effect of PEO-PPO-PEO copolymers on the glutathione (GSH)/glutathione-S-transferase (GST) detoxification system, interaction between the copolymers and GSH is studied by NMR measurements. Selective rotating-frame nuclear Overhauser effect (ROE) experiment confirms that glutamyl (Glu) α-H of GSH has spatial contact with EO methylene protons. Spin-lattice relaxation times of GSH Glu α-H show a decrease when PEO-PPO-PEO copolymers are added, and the decrease is greater with copolymers possessing more EO units.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2010
pH- and temperature-responsive polymeric drug carriers based on Chitosan oligosaccharide (CSO)-g-Pluronic copolymers were successfully synthesized for Doxorubicin (DOX) controlled release. The critical aggregation concentration of CSO-g-Pluronic is 0.035 mg/mL at 25 degrees C.
View Article and Find Full Text PDFThe micellization mechanism of PEO-PPO-PEO block copolymer in aqueous solutions was studied by two-dimensional correlation FTIR spectroscopy. The 1400-1000 cm(-1) region was investigated, involving the stretching vibrations of ether band, C-H wagging vibrations of EO methylene groups and C-H symmetric deformation vibrations of PO methyl groups. In the 2D correlated spectra, the hydrous and anhydrous state of the ether band, PO methyl groups, and the two conformations of EO methylene groups were observed.
View Article and Find Full Text PDF