Publications by authors named "Lianqi Sun"

Article Synopsis
  • - Tuberculosis (TB) is a significant global health issue, necessitating research for new anti-TB drugs to aid in elimination efforts.
  • - A new class of anti-TB agents was identified, with two compounds showing excellent activity against TB bacteria and low toxicity.
  • - These compounds also demonstrated good metabolic stability and oral bioavailability, exhibiting protective effects in zebrafish studies, making them strong candidates for further research.
View Article and Find Full Text PDF

Most patients with senile osteoporosis (SOP) are severely deficient in bone mass, and treatments using bone resorption inhibitors, such as bisphosphonates, have shown limited efficacy. Small-molecule osteogenesis-promoting drugs are required to improve the treatment for this disease. Previously, we demonstrated that a compound with a benzofuran-like structure promoted bone formation by upregulating BMP-2, and it exhibited a therapeutic effect in SAMP-6 mice, glucocorticoid-induced osteoporosis rats, and ovariectomized rats.

View Article and Find Full Text PDF

Ovarian cancer (OC) is a gynecological tumor with possibly the worst prognosis, its 5-year survival rate being only 47.4%. The first line of therapy prescribed is chemotherapy consisting of platinum and paclitaxel.

View Article and Find Full Text PDF

In this study, indlomycin, an inhibitor of tryptophanyl-tRNA synthetase (TrpRS), and 29 racemic indolmycin derivatives were synthesized, their antibacterial activity were evaluated against methicillin-resistant Staphylococcus aureus (S. aureus) NRS384, ATCC29213, and Escherichia coli (E. coli) ATCC25922 strains.

View Article and Find Full Text PDF

Given the importance of FOXM1 in the treatment of ovarian cancer, we aimed to identify an excellent specific inhibitor and examined its underlying therapeutic effect. The binding statistics for FDI-6 with FOXM1 were calculated through computer-aided drug design. We selected XST-119 through virtual screening, performed surface plasmon resonance and cell antiproliferative activity analysis and evaluated its antitumor efficacy in a mouse model.

View Article and Find Full Text PDF

There is an urgent need for antibiotics with novel structures and unexploited targets to counteract bacterial resistance. Novel tryptophanyl-tRNA synthetase inhibitors were discovered based on virtual screening, surface plasmon resonance binding, enzymatic activity assay and antibacterial activity evaluation. Of the 29 peptide derivatives tested for antibacterial activity, some inhibited the growth of both and .

View Article and Find Full Text PDF

Optimization of IG-105 (1) on the carbazole ring provided five series of new carbazole sulfonamides derivatives, 7a-e, 8a-g, 9a-g, 10a-e, and 11a-g. All of the compounds were evaluated against HepG2, MCF-7, MIA PaCa-2, and Bel-7402 cells for antiproliferative activity. Each series of compounds was 2-5 times more active against HepG2 cells (IC: 1.

View Article and Find Full Text PDF

Here, we formulated and investigated the structure-activity relationships of novel N-substituted carbazole sulfonamide derivatives with improved physicochemical properties. Most of these new compounds displayed good aqueous solubility. Certain molecules presented strong in vitro antiproliferative and in vivo antitumor activity.

View Article and Find Full Text PDF

An urgent need for the development of antibiotics with novel structures and unexploited targets. Racemic chuangxinmycin was obtained via a novel synthesis route. Chiral preparative chromatography was used to separate chuangxinmycin from its epimers, and four stereoisomers were obtained.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) is a rational target for cancer therapy, because its overexpression plays an important oncogenic role in a variety of solid tumors; however, EGFR-targeted antibody-drug conjugate (ADC) therapy for esophageal squamous cell carcinoma (ESCC) is exceedingly rare. LR004 is a novel anti-EGFR antibody with the advantages of improved safety and fewer hypersensitivity reactions. It may be of great value as a carrier in ADCs with high binding affinity and internalization ability.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide due to its chemoresistance and poor prognosis. Currently, there is a lack of effective small molecule drugs for the treatment of ESCC. Microtubules are an attractive target for cancer therapy since they play a central role in various fundamental cell functions.

View Article and Find Full Text PDF

The current optimization of IG-105 (3) on the carbazole-ring provided a series of new carbazole sulfonamides derivatives 13a-13m. All of the compounds have been evaluated against HepG2 cells (hepatoma cancer) for antiproliferative activity. Compounds that showed activity better or comparable to that of 3 versus HepG2 were evaluated against MCF-7 (breast cancer), MIA PaCa-2 (pancreatic cancer), and Bel-7402 (hepatoma/liver cancer) for antiproliferative activity.

View Article and Find Full Text PDF

Using physicochemical property-driven optimization, twelve new diarylaniline compounds (DAANs) (7a-h, 11a-b and 12a-b) were designed and synthesized. Among them, compounds 12a-b not only showed high potency (EC50 0.96-4.

View Article and Find Full Text PDF

3-Hydroxymethyl-4-methyl-DCK (, HMDCK) was discovered previously as a potent HIV non-nucleoside reverse transcriptase inhibitor (NNRTIs) (EC: 0.004 μM, TI: 6225) with a novel mechanism of action. It exerts anti-HIV activity by inhibiting the production of HIV-1 double-stranded viral DNA from a single-stranded DNA intermediate, rather than blocking the generation of single-stranded DNA from a RNA template, which is the mechanism of action of current HIV-1 RT inhibitors.

View Article and Find Full Text PDF

Twenty-one new 4-substituted diarylaniline compounds (DAANs) (series 13, 14, and 15) were designed, synthesized, and evaluated against wild-type and drug resistant HIV-1 viral strains. As a result, approximately a dozen new DAANs showed high potency with low nano- to subnanomolar EC(50) values ranging from 0.2 to 10 nM.

View Article and Find Full Text PDF

The current optimization of 2,4-diarylaniline analogs (DAANs) on the central phenyl ring provided a series of new active DAAN derivatives 9a-9e, indicating an accessible modification approach that could improve anti-HIV potency against wild-type and resistant strains, aqueous solubility, and metabolic stability. A new compound 9e not only exhibited extremely high potency against wild-type virus (EC(50) 0.53 nM) and several resistant viral strains (EC(50) 0.

View Article and Find Full Text PDF